

Noise Delineation Map (dBA) Scenario C1 - Earthworks

7 Soils, Geology & Hydrogeology

7.1 Preliminary Risk Assessment

7.2 Ground Investigation Report

0

0

Dublin Street North Preliminary Geoenvironmental Risk Assessment

Client Document Ref. Project Title Date McAdam Design Limited 23165-PRA-001-00 Dublin Street North PRA 13/10/2023

Project Title:	Dublin Street North PRA		
Report Title:	Dublin Street North Preliminary Geoenvironmental Risk Assessment		
Document Reference:	23165-PRA-001-00		
Client:	McAdam Design Limited		
Confidentiality	Client Confidential		

REVISION HISTORY

Rev	Date	Reason for Issue	Originator	Reviewer	Approver
00	13/10/2023	For Information	J McGrath/ L Braga	R Harrison/ S Curtis	R Harrison

REVISION SUMMARY

Rev	Date	Section(s)	Detail of Change

DISCLAIMER

Gavin & Doherty Geosolutions Ltd. (GDG) has prepared this report for the sole use of McAdam Design Limited (hereafter the "Client") in accordance with the terms of a contract between the Client and GDG. No other warranty, express or implied, is made as to the professional advice contained in the report or any other services provided by GDG. This report is confidential to the Client and may not be shared with or relied upon by any other party without the prior and express written agreement of GDG.GDG assumes no liability or duty of care to any third party in respect of or arising out of or in connection with this report and/or the professional advice contained within.

This report is the copyright of Gavin & Doherty Geosolutions Ltd. Any unauthorised reproduction or usage (in whole or in part) by any person other than the Client is strictly prohibited.

TABLE OF CONTENTS

Cha	pter		Page
1	Introc	duction	5
	1.1	General	5
	1.2	Scope of Works	6
	1.3	Desk Study Resources	7
	1.4	Guidance	7
	1.5	Risk Assessment	7
2	Desk S	Study	9
	2.1	Site Description	9
		2.1.1 Current Site Use	10
		2.1.2 Current Surrounding Area Use	10
	2.2	Site Walkover	11
		2.2.1 Invasive Plant Observations	12
	2.3	Site History	13
	2.4	Anticipated Ground Conditions	15
		2.4.1 Regional Geology and Landscape	15
		2.4.2 Bedrock Geology	16
		2.4.3 Quaternary Sediments	17
		2.4.4 Soils	19
	2.5	Topography	20
	2.6	Hydrology	21
	2.7	Hydrogeology	24
	2.8	Mining	28
	2.9	Industrial Land Use	28
	2.10	Radon	28
3	Initial	Conceptual Site Model	30
	3.1	General	30
	3.2	Sources	30
		3.2.1 On-Site	30
		3.2.2 Surrounding	31
	3.3	Pathways	33
	3.4	Receptors	33
		3.4.1 Humans	33
		3.4.2 Fauna And Vegetation (Ecology)	34
		3.4.3 Surface Water	34
		3.4.4 Groundwater	34
	3.5	Risk Assessment	34
4	Poten	tial Geotechnical Issues	36
5	Concl	usions and Recommendations	38
	5.1	Conclusions	38
		5.1.1 Geotechnical	38
	5.2	Recommendations	38
	5.3	Limitations	40

Appendix A Site Walkover 16 th August 2023	41
Appendix B Site constraints drawing	42

LIST OF TABLES

Table 1-1 Definitions of Source, Pathway and Receptor	8
Table 2-1 Site History	14
Table 2-2 River water quality	23
Table 2-3 Groundwater quality	27
Table 3-1 Conceptual Site Model – Sources	33
Table 3-2 Risk Assessment	35

LIST OF FIGURES

Figure 1-1: Indicative Site Plan	5
Figure 1-2 Site Location Plan	6
Figure 2-1 Site boundary	9
Figure 2-2 Land use (Corine 2018, EPA 2023)	11
Figure 2-3 Japanese Knotweed Locations	13
Figure 2-4 Regional Geology	15
Figure 2-5 Bedrock Geology (GSI, 2023)	17
Figure 2-6 Quaternary Geology (GSI, 2023)	18
Figure 2-7 GSI Geotechnical Boreholes data	19
Figure 2-8 Irish soils at the site (Teagasc, 2023)	20
Figure 2-9 Topography	21
Figure 2-10 Blackwater Catchment	22
Figure 2-11 Site hydrography	22
Figure 2-12 Flood Risk (EPA, 2023)	23
Figure 2-13 Historic Flood Maps produced (GSI, 2023)	24
Figure 2-14 Groundwater Recharge (GSI, 2023)	25
Figure 2-15 Subsoil Permeability (GSI, 2023)	25
Figure 2-16 National Groundwater Vulnerability Ireland (GSI, 2023)	26
Figure 2-17 Groundwater direction	26
Figure 2-18 Public Supply Source Protection Areas (GSI, 2023)	28
Figure 2-19 Radon Risk (EPA, 2023)	29

AVIN & DOHERT GEOSOLUTIONS

1 INTRODUCTION

1.1 GENERAL

Gavin and Doherty Geosolutions (UK) Ltd (GDG) were commissioned by McAdam Design Ltd. to complete a Preliminary Geoenvironmental Risk Assessment (Desk Study) Report of environmental ground conditions for a proposed development site on Land North of Dublin Street, Monaghan. The site location and site boundary are outlined in Figure 1-2 and the indicative site layout, provided by the client as the Public Consultation Design - Illustrative Plan, is outlined in Figure 1-1.

Figure 1-1 Indicative Site Plan

The desktop study review is intended to inform the construction of the development which consists of:

- Semi-private public open space; and,
- Associated infrastructure.

The site is located at Irish Transverse Mercator (ITM) reference 667400 Easting, 833700 Northing. It is situated in the town and county of Monaghan in the Republic of Ireland. Access from Dublin is via the M1 and N2, approximately 130 km northbound; and access from Belfast is via M1 and N2, approximately 91 km to the southwest. Dublin Street is a one-way road heading southeast and accesses Old Cross Square. In the vicinity of the project area are several commercial businesses, including Monaghan Shopping Centre Mall, Fleming's SuperValu Monaghan, Go Petrol Station and Monaghan Harps GAA Club.

The indicative site plan is proved as Figure 1-1. This report aims to assess potential contamination constraints on the site as it currently stands, and concerning the potential development, and to provide outline recommendations for additional works required to address areas of uncertainty.

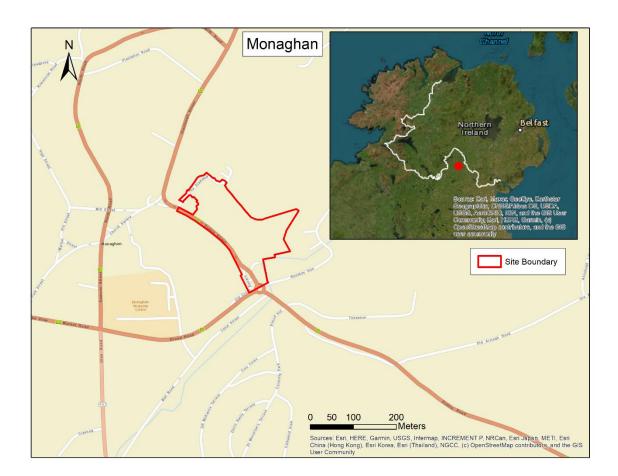


Figure 1-2 Site Location Plan

1.2 SCOPE OF WORKS

Desk-based information contained within this report has been compiled through a review of environmental data and available mapping (historical, geological, and hydrogeological). The preparation of this report included the following specific tasks:

- Review the relevant development history of the site from available historical maps to identify previous uses that may have resulted in contamination issues or constraints.
- Review the local geology, surface water, and hydrogeology classifications from the available geological plans and memoirs.
- Undertake a qualitative risk assessment of potential contamination issues at the site. The qualitative risk assessment includes the development of an Initial Conceptual Site Model for the site and the identification of any Significant Pollutant Linkages.
- Determine whether additional investigation is necessary to provide further information on the contamination and geotechnical status of the site.

A site walkover was undertaken by a GDG Engineer on 16th August 2023, with photographs included in Appendix A.

1.3 DESK STUDY RESOURCES

The following information sources have been used to assist in making a preliminary assessment of potential constraints posed by the site concerning the proposed development.

- Historic Ordnance Survey Ireland (OSI) maps ranging between 1829-1841, 1897-1913 & 1913.
 - <u>https://osi.ie/products/professional-mapping/historical-mapping/</u>
- Internet-based aerial photography between 1985 and 2022. Google Earth.
- Geological Survey Ireland Spatial Resources Map Viewer Department of Communications, Climate Action and Environment. Which addresses geological & geotechnical records, geological heritage, soil geochemistry, aggregate potential etc:
 - <u>http://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde</u>
 <u>2aaac3c228</u>
- Radon Potential, via the Environmental Protection Agency Radon Map:
 - <u>http://www.epa.ie/radiation/radonmap/</u>
- Environmental Protection Agency Radon Map Viewer
 - https://gis.epa.ie/EPAMaps/
- Land and Soil EPA maps
 - <u>https://webapps.geohive.ie/mapviewer/index.html</u>
- Industrial and Sensitive land use records obtained from EPA.
 - https://gis.epa.ie/EPAMaps/

Information was obtained from the site walkover conducted by GDG on 16th August 2023.

1.4 GUIDANCE

The following guidance documents have been used in the production of this report:

- Land contamination risk management (LCRM) How to assess and manage the risks from land contamination. Environment Agency (EA, UK October 2020, last updated July 2023)
- Guidance on the management of contaminated land and groundwater at EPA Licensed Sites (EPA Ireland, 2013)
- Environmental Risk Assessment for Unregulated Waste Disposal Sites (EPA Ireland, 2007)

1.5 RISK ASSESSMENT

The primary objective when addressing concerns regarding contaminated land and groundwater is to ensure the protection of human health, water sources (including groundwater), and the broader environment.

Adopting a Risk-based assessment of recognized or suspected problems regarding contaminated land and groundwater is considered the optimal approach and is obligatory according to the regulations

for Environmental Liability. The utilization of a 'risk-based' procedure should be consistently applied to comprehend contamination matters of land and groundwater at various sites to a satisfactory extent. This comprehension enables informed decision-making and regulatory approval for proposed actions or remedies.

The methodology for conducting risk assessment aligns closely with the guidelines outlined in the EPA's CODE OF PRACTICE: Environmental Risk Assessment for Unregulated Waste Disposal Sites (2007) (referred to as "COP" hereafter) and the UK Environment Agency's (UKEA) publication Land contamination risk management (LCRM) October 2020 & updated April 2021.

For the assessment procedure to be effective, there is a need for the collection of reliable data based on a good-quality Conceptual Site Model (CSM) - Table 1 2. The CSM describes the potential sources of contamination at a site, the migration pathways it may follow and the receptors it could impact upon. Potential receptors to land and groundwater contamination might include (but are not exclusive to) humans, water resources, groundwater/surface water-dependent ecosystems and living organisms. If complete source–pathway–receptor scenarios exist then there is a potential pollutant linkage that needs to be characterised and assessed (via formal risk assessment).

To identify a risk of contamination, there is the need to identify not only a potential source of contamination and a receptor but also a pathway or mechanism by which the contamination can be transported between the source and the receptor. A combination of a source, a pathway and a receptor is known as a 'pollutant linkage'. Definitions of each element are provided in Table 1-1.

Source	Contaminated materials and/or gases/ vapours	
Pathway	The route via which the receptor can be or is being exposed to the source of contamination	
Receptor	Human health, property, ecosystem and/or water environment that may be affected by the source of contamination through ingestion, inhalation, touch, or other mechanism	

Table 1-1 Definitions of Source, Pathway and Receptor

For a risk to exist, a complete Source – Pathway – Receptor linkage must be present. Should one or more of the components be missing, then the linkage is not complete and there is no associated risk.

2 DESK STUDY

2.1 SITE DESCRIPTION

The 21,168 m² site is located in the town of Monaghan, which is the county town of County Monaghan, Republic of Ireland. The ITM Reference for the approximate centre of the site is 667400 Easting, 833700 Northing and the location is shown in Figure 1-2 and Figure 2-1.

The site is located to the northeast of the town centre, extending from The Diamond to the northwest, south-eastwards along Dublin Street, and is defined to the southeast by Old Cross Square.

The plan area is defined by the residential terraces on Dublin Street to the southwest and their long rear gardens that extend to the north. Historically the rear gardens extended to the wall that formerly enclosed St. Davnet's. 20th-century development resulted in the introduction of an informal access road to the rear and various backland developments including commercial premises.

This assessment is focused on the development areas provided in Figure 2-1, which comprise areas of semi-private public open space and associated infrastructure. Residential and commercial development which will take place in the hatched areas does not form part of this assessment.

Figure 2-1 Site boundary

2.1.1 CURRENT SITE USE

The site comprises mixed commercial and residential land. This consists of professional services including solicitors offices, commercial uses including retail units; laundry, clothing, footwear, salon, public house, restaurant, PVC windows supplier, auto repair shop and Guest House. Commercial premises have also developed to the rear, including a furniture factory. A number of the shops extended the retail use to the full width of the property which does not allow separate access to the upper levels and which has led to vacancy at upper levels. There are also several vacant shops along the street. The backland areas are substantial but underutilised.

2.1.2 CURRENT SURROUNDING AREA USE

The surrounding area is best described as the town centre, comprising a mix of uses, including residential and a mix of small to medium-scale retail uses based on the traditional narrow plot street pattern on Glaslough Street, the Diamond, Dublin Street and Market Square. A cemetery is present in the immediate vicinity of Old Cross Square. A petrol station and an alcoholic beverage wholesaler (Monaghan Bottlers Ltd) are also in the surrounding area. Agricultural land is present to the north of the site.

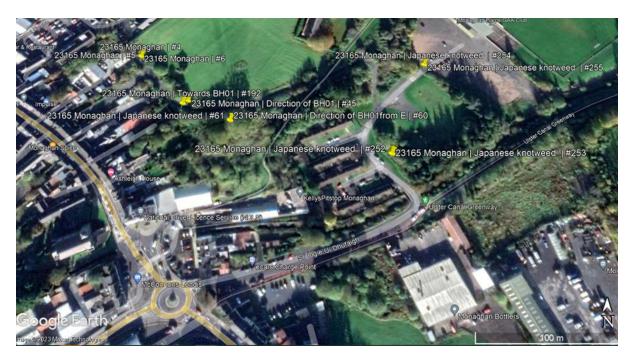
The map in Figure 2-2 is a cropping of the Corine Land Cover 2018 (EPA) which shows the land use classifications for the site and its surroundings. The dataset is based on the interpretation of satellite imagery and national in-situ vector data. The project boundaries fall into two classes "Continuous urban fabric" (purple hatching) for the largest area and a smaller area classified as "Pastures" (green hatching).

Figure 2-2 Land use (Corine 2018, EPA 2023)

2.2 SITE WALKOVER

A site walkover was undertaken by a GDG Engineer on the 16th of August 2023. Some access constraints/ restrictions have been identified on the site, see constraints drawing within Appendix B. Access to the site is limited and some difficulties are foreseen for the entry of machinery and undertaking investigation works, as summarised below:

- At Dublin Street, there are several possible access routes to the site, which range from narrow footpaths to 2.1-2.4m in width. Some (including the one beside the laundry) are covered with a height of ~3m. Access to the central portion of the site would require clearance of vegetation, with Japanese Knotweed having been identified within the vegetation.
- This central area is accessible from the track to the northeast of the site via two main entrances. Both of these are on private land, with one featuring a locked gate. Access would need to be agreed upon with the keyholder/landowner.
- A large sealed shipping container and shed were present in this central area, however, the owners were not available to provide access/ a description of the contents.
- Construction and demolition materials have been utilised to form a ramp access egress route in several locations across the central portion of the site.



- Access to the heavily vegetated area in the eastern part of the site, to the west of a former infirmary (section 2.3), was not possible from the northeast due to the presence of a large wall. The dense vegetation in this area also prevents access.
- The ruins of the former Infirmary are visible in a densely forested thicket. Vegetation clearance including tree felling would be required to access the area.
- The Eastern corner of the site is accessible via a 1.2 m wide footpath, but there is a significant amount of vegetation which will make access difficult.
- In the southern part of the site, near Old Cross Square, the buildings have a large retaining wall behind them and it is difficult to access the back of the Shambles bar. Additionally, much of the land in the southern portion of the site is private residential land, with no vehicular access from the street.
- The southern portion of the site to the North of Old Cross Square, is accessible via one route with two key constraints:
 - From the 'Let Us Launder' laundry side, the gates are locked, (2.1m wide and 3m high at Dublin Street), liaison with the land owner/ key holder will be necessary.
 - Access from here into the land behind the laundry is via a tight bend, with a gate (~2.3m width), which is also not ideal for ground investigation plant selection. This land is owned separately from the laundry and will also require landowner liaison.
- Access was not possible to:
 - The Northwestern portion of the site to the southwest of the Diamond Carpark
 - The southern portion of the site to the North of Old Cross Square, this area was heavily vegetated with a significant amount of waste such as broken glass bottles/cans observed in the wooded area.
- The majority of the buildings present in the vicinity of the site had oil storage tanks to the rear, understood to form part of the central heating systems.

2.2.1 INVASIVE PLANT OBSERVATIONS

Although the walkover survey conducted on the 16th of August 2023 was not undertaken by an ecologist, GDG noted the presence of probable Japanese Knotweed at the following locations presented in Figure 2-3.

Figure 2-3 Japanese Knotweed Locations

A photograph log is presented in Appendix A, noting the presence of Japanese Knotweed in five distinct areas:

- Plates 4, 5 & 6: On the access road to the North of the site.
- Plate 60 & 61: Within the wooded area close to the Former Infirmary.
- Plate 45 & 192: On the site access road.
- Plate 251, 252 & 253: To the East of the Site.
- Plate 254 & 255: At the entrance to Monaghan Harps GAA Club.

As part of any site investigation or other intrusive works, we would recommend prohibiting access to these areas and establishing a no-dig zone of min. 7m offset in the vicinity of these knotweed stands, based on the following: *It is an offence under Article 49 (2) of the European Communities (Birds and Natural Habitats) Regulations 2011 for any person to plant, disperse, allow to grow or cause to disperse, spread or otherwise cause to grow throughout the state any plant included in Part 1 of the Third Schedule. Japanese knotweed is included in the Third Schedule of the Regulations.*

A full Invasive Species Survey and Management Plan will be managed and directed by others, and the suitability of the proposals above will be confirmed by those responsible for this aspect.

No evidence of Himalayan Balsam or Giant Hogweed was observed onsite.

2.3 SITE HISTORY

The history of the site has been reviewed using historical Ordnance Survey Ireland (OSI) maps dating:

- 6 Inch First Edition Colour/ B&W (1829-1841)
- 25 Inch B&W (1897-1913)

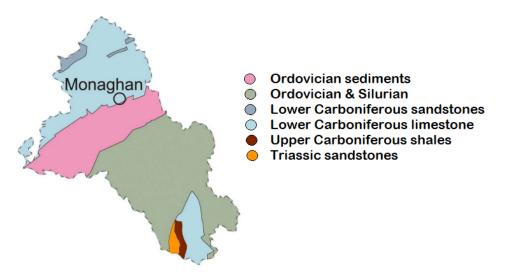
• 6 Inch Last Edition B&W (1913)

Google Earth has been used to cover the period 1985 – 2023. A summary is provided in

Table 2-1

Table 2-1 Site History

Date	Site History	Surrounding Land Use
1829 - 1841	 The buildings are present in a similar locality to the present day. The northeastern portion of the site has no buildings of note and is covered in pastures. Shambles Bridge and Old Cross Square are identified in the south of the site. The present-day street network exists at this time with Dublin Street, Dawson Street and Male Road. Monaghan was a welleestablished townland in this period. 	 An old infirmary and quarry can be seen near the south-eastern edge of the site. The canal bridge is located to the south of the site. The "Diamond" area to the north of the site is also present, as is Monaghan Lake (later called Peter's Lake). Gaol (West of Monaghan Lake) - 400-500m NW of the Diamond Carpark.
1897-1913	• As above the site remains partly covered by buildings and partly by pastureland.	 The location where the infirmary used to be is now called the "Lodge". There is a symbology of a landform break in the area where the quarry used to be, apparently, the quarry no longer operated at this time. The area where there used to be a Gaol is now identified as Monaghan County Infirmary. Smithy/ Blacksmith – 20m east of the site's southern boundary. Gasworks - about 300m NEE of our southern boundary. A graveyard is identified to the east of Old Cross Square at the rear of the Presbyterian Church.
1913	 In a similar way as before, the site is still partly covered by buildings and partly by pastureland. 	 There is an area of pasture in the region where the quarry used to be. The area where there used to be a Monaghan County Infirmary is now identified as a County Hospital. Laundry is also located to the north of the hospital. Gasworks are mentioned in the same area. The graveyard and church are identified on the map. A pump station is located 90m to the southwest of the site.

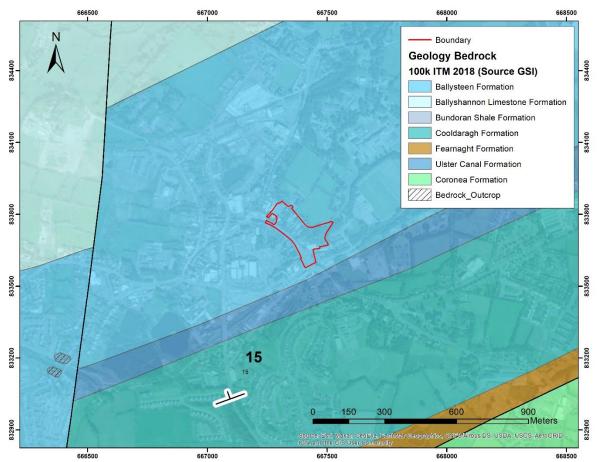

Date	Site History	Surrounding Land Use
		• A Sawmill/ Creamery are present - 80m South of Dublin Street on the banks of the Shambles.
Google Earth 1985 - 2023	• The site does not experience any significant changes during this period.	• The surrounding area experiences minor alternation and new builds.

2.4 ANTICIPATED GROUND CONDITIONS

Anticipated geological and hydrogeological conditions across the site were determined from available Geological Survey of Ireland (GSI) 1:100,000 and 50,000 and – "Report on ground investigation for proposed Monaghan Town Collection Network" (IGSL, 2007).

2.4.1 REGIONAL GEOLOGY AND LANDSCAPE

In general, Monaghan's landscape is low and gently undulating. The northern third of the county, where the study area is located, is underlain by Carboniferous rocks, some 360 to 330 million years old. Monaghan's geology is partly evident in the physical features we see in the county today. These main physical features include the Drumlin Hills and the lakes. The drumlins were formed during the last ice age (the Midland cold stage, 75 - 10,000 years ago). The ice sheets that covered Co Monaghan during the last Ice Age had a profound influence on its current landscape. In much of the county, it has been shaped by the moving ice sheet in the countless drumlins that have given the landscape its "egg basket" appearance (Swartz & Daly 2002; Simms 2003).


Figure 2-4 Regional Geology

2.4.2 BEDROCK GEOLOGY

The bedrock geology underlying the site is mapped on the GSI 1:100,000 bedrock formations map. This data shows that there are three different formations underlying and adjacent to the proposed site:

- Ballysteen Formation (Limestone) Dark muddy limestone, shale. Irregularly bedded and nodular bedded argillaceous bioclastic limestones (wackestones and packstones), interbedded with fossiliferous calcareous shales. It represents a widespread development throughout Westmeath and Longford.
- Ulster Canal Formation (Sandstone) It is composed of a marine sandstone unit and 'shaly pales and pale beds', that is silty and sandy limestones that are variably fossiliferous with occasional parallel and cross-laminations and some fine-grained limestones.
- Cooldaragh Formation (Mudstone) It consists of pale brown-grey siltstones and mudstones, algal, evaporitic and argillaceous micrites and muddy siltstones.

The bedrock geology map (GSI, 2023) is shown in

Figure 2-5. From the mapped information, the site is entirely within the **Ballysteen Formation** (Limestone).

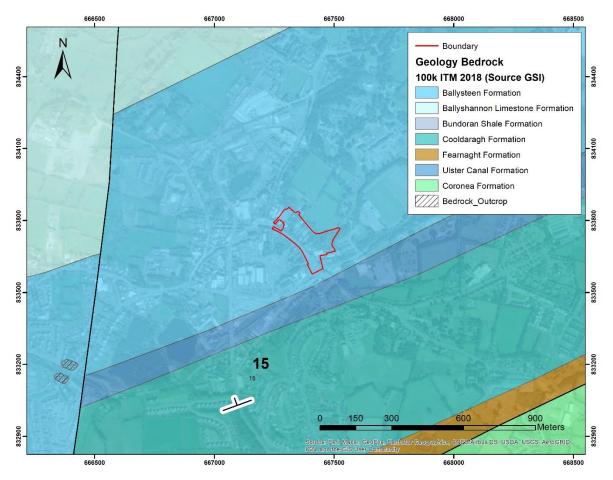


Figure 2-5 Bedrock Geology (GSI, 2023)

2.4.3 QUATERNARY SEDIMENTS

According to the 'Quaternary geology of Ireland – Sediments Map' scale 1:50,000 (GSI, 2023), the site consists of glacial till deposits derived from limestones (TLs), as well as the made ground (A) as shown in Figure 2-6. In the areas immediately around the edges of the site, alluvium and peat are also mapped, as can be seen on the map.

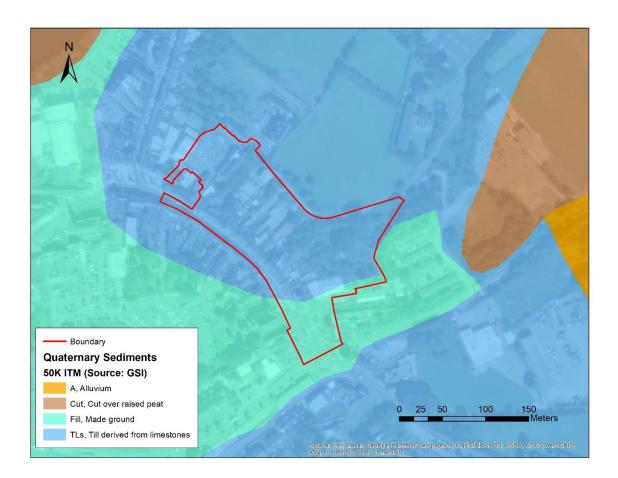


Figure 2-6 Quaternary Geology (GSI, 2023)

Using the GSI Geotechnical Boreholes data, it is possible to check at what depth the bedrock was found in the vicinity and area of the site, Figure 2-7. There is a wide variation of information, but it is possible to verify that the rock was found between 5 and 10 meters in the vicinity of the Ulster Canal. Continuing north along Dublin Street 2 boreholes report reaching the bedrock between 0-5 meters and another that reached the bedrock between 5-10 meters. There are no further details about these boreholes - Figure 2-7.

One existing ground investigation report was available on the GSI geotechnical archive for an adjacent site – "Report on ground investigation for proposed Monaghan Town Collection Network" (IGSL, 2007). The reported site is located approximately 500m to the west of the project.

The investigation is composed of nine cable percussive boreholes extending to depths of up to 12mbgl and associated in-situ testing and laboratory testing reports.

The boreholes identify a varied ground profile consisting of:

- Made ground Stiff and dense granular and cohesive fill material,
- Organic material Very soft to Soft PEAT and soft organic SILT and sandy SILT,
- Granular Glacial till Medium dense to very dense glacial sandy GRAVEL with cobbles and boulders reported,

• Cohesive Glacial Till – Firm to stiff gravelly CLAY with cobbles and boulders.

Bedrock was not confirmed during the investigation. Although this investigation identified peat deposits, it is not envisaged that peat will be present within the site boundary as presented in Figure 2-6.

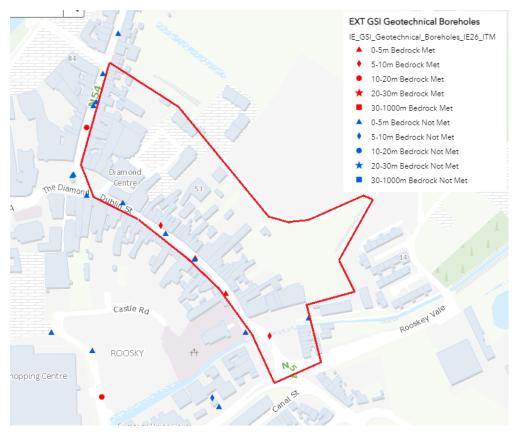


Figure 2-7 GSI Geotechnical Boreholes data

2.4.4 SOILS

The soil mapped by Teagasc for the site area is shown in Figure 2-8. The map shows that within the boundaries of the site, two soil classes are present. One is the Urban soil which covers most of the site. The other soil present, of natural origin, is Ballincurra (1150b) characterized as fine loamy over limestone bedrock, Subgroup: Typical Calcareous Brown Earths.

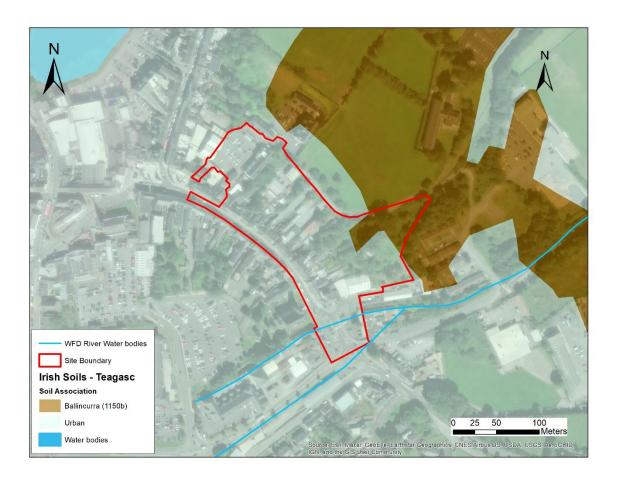


Figure 2-8 Irish soils at the site (Teagasc, 2023)

2.5 **TOPOGRAPHY**

The landform of the region is presented in Figure 2-9, with elevations on the site varying between 68m Above Ordnance Datum (AOD) (in the east) and 59mAOD (in the south). The base level of the region and the site are the Ulster Canal and the River Shambles, which on the site are at elevations of around 59mAOD.

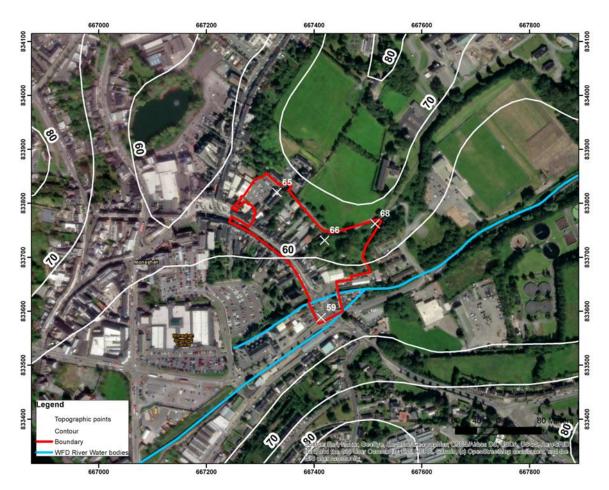
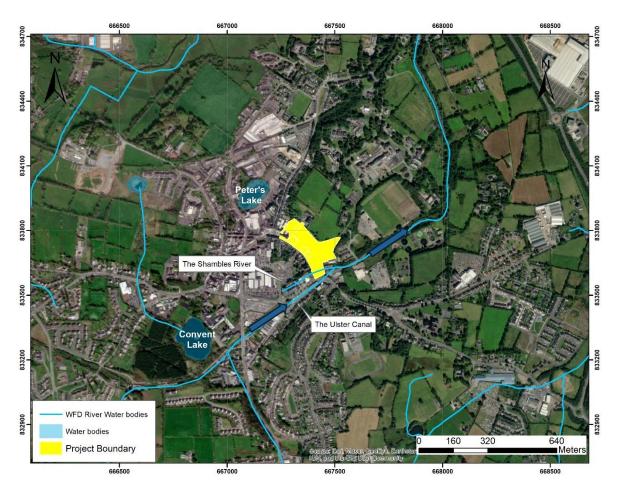


Figure 2-9 Topography

2.6 HYDROLOGY


The site is located upstream in the watershed named Blackwater. The Blackwater catchment lies in the Neagh Bann International River Basin District and is part of the larger Lough Neagh-Lower Bann catchment. The Blackwater is a cross-border catchment with a surface area of 1,491km², of which 1,097 km² (74%) lies in NI (County Armagh and County Tyrone) and 393.8km² (26%) is located in ROI (County Monaghan).

Locally, the Ulster Canal runs south of the project area and the River Shambles cuts through the site. Ulster Canal and the Shambles River separate just upstream of the site and the Ulster Canal, diverting south of the River Shambles, has been culverted under several areas through the town (Canal Street), including the square. The river flows locally in a north-easterly direction, Figure 2-11. Two bodies of water are also in the vicinity of Dublin Street North Regeneration Project: Patena Lake (or Peter's Lake) 175 m to the northwest and Convent Lake 550 km to the west.

Figure 2-10 Blackwater Catchment

Figure 2-11 Site hydrography

Concerning surface water quality, the information from the EPA (2023) is shown in Table 2-2 River water quality.

Parameter	Status
River Waterbodies Risk for Shambles locally	at Risk
River Waterbody WFD Status 2016-2021	Poor

In the vicinity of the site boundary (marked with a red x) there is flood risk – medium probability on the banks of the Shambles River, as can be seen on the map in Figure 2-12. This layer shows the modelled extent of land that might be flooded by rivers in a severe flood event. Medium Probability flood events have approximately a 1-in-a-100 chance of occurring or being exceeded in any given year. This is also referred to as an Annual Exceedance Probability (AEP) of 1%.

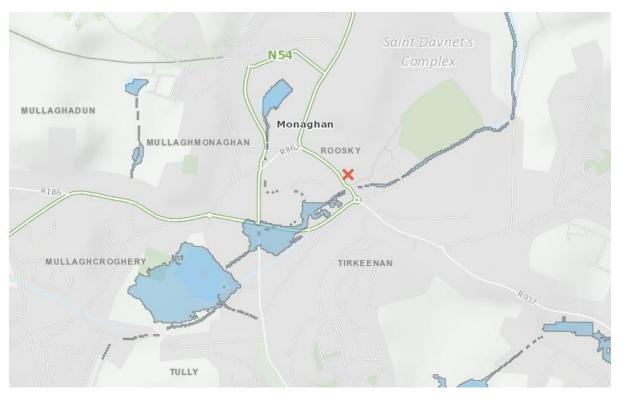
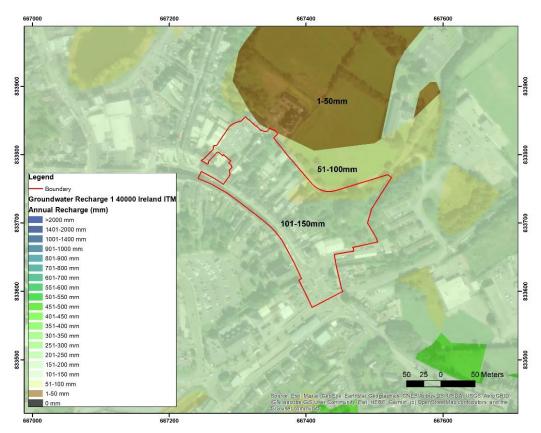
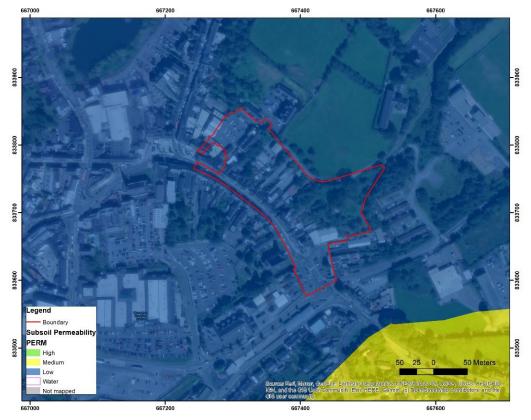


Figure 2-12 Flood Risk (EPA, 2023)

The Historic Flood Maps produced by GSI in collaboration with Trinity College Dublin and the Institute of Technology Carlow (Figure 2-13) don't show any flood areas within 750 m of the site. However, the requirement for a flood risk assessment should be undertaken by a suitably qualified hydrologist.


Figure 2-13 Historic Flood Maps produced (GSI, 2023)

2.7 HYDROGEOLOGY


Monaghan is characterized by a mild and moderate climate (Cfb) - Köppen and Geiger. The average annual temperature in Monaghan is 9.3 °C and the rainfall here is around 1001 mm per year.

According to information provided by GSI Groundwater Resources (Aquifer), the groundwater Rock Unit beneath the site is the Dinantian Lower Impure Limestone, and the aquifer is defined as Regionally Important Aquifer-Fissured bedrock (Rf). The Average Recharge Range for the site is in two different classes, with most of the site being in the 101-150mm/yr class and a smaller area being in the 51-100mm/yr class as shown on the map in Figure 2-14 The Subsoil Permeability is considered Low for the site and surrounding Figure 2-15. However, in terms of groundwater vulnerability, the site is in the High and Moderate classes as is shown in Figure 2-16.

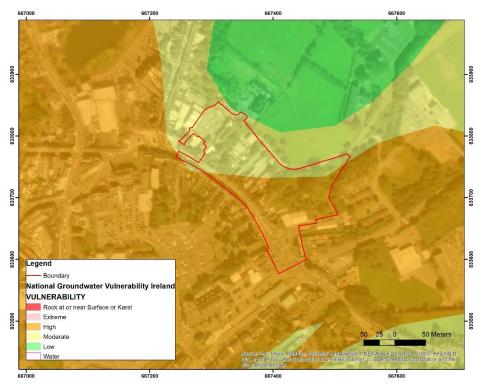


Figure 2-16 National Groundwater Vulnerability Ireland (GSI, 2023)

Groundwater direction: The groundwater probably follows the local topography which directs the water to the northwest (Figure 2-17), with the base being the River Shambles.



Figure 2-17 Groundwater direction

Groundwater quality: Concerning groundwater quality, the information from the EPA (2023) is shown in Table 2-3 Groundwater quality.

Table 2-3 Groundwater quality	
Parameter	Status
Ground Waterbodies Risk: Not at Risk	Not at Risk
Ground Waterbody WFD Status 2016-2021	Good

blo 2.2 Groundwater quality

The dataset known as Public Supply Source Protection Areas consists of designated zones called Source Protection Areas (SPAs) which are situated around points where groundwater is extracted. These extraction points are managed by Irish Water and serve as sources for supplying Public Water Supply Schemes throughout Ireland. The primary purpose of these SPAs is to enhance protection by imposing stricter regulations on activities carried out within some or all parts of the area from which water flows into the well or spring, known as the Zone of Contribution (ZOC). There are two distinct Source Protection Areas (SPAs) that have been identified. The first is the Inner Protection Area (SI), which is established to safeguard against immediate negative impacts stemming from human actions, particularly those causing microbial pollution. The second is the Outer Protection Area (SO), encompassing the remaining portion of the zone of contribution (ZOC) to the specific groundwater extraction point, such as a borehole or spring.

The map in Figure 2-18 shows that the site lies within the Monaghan PWS SO - Outer Protection Area. This area is identified as having a potential impact on the quality and safety of the water source. The goal of these measures is to minimize potential contamination or pollution of the groundwater source that could affect the quality of the water supplied to the public. The controls aim to ensure that activities within this zone do not compromise the integrity of the water source and maintain its suitability for use as a public water supply.

There is no Natural Heritage Area (NHA) or Geological Heritage Area (GHA) in the immediate vicinity of the site.

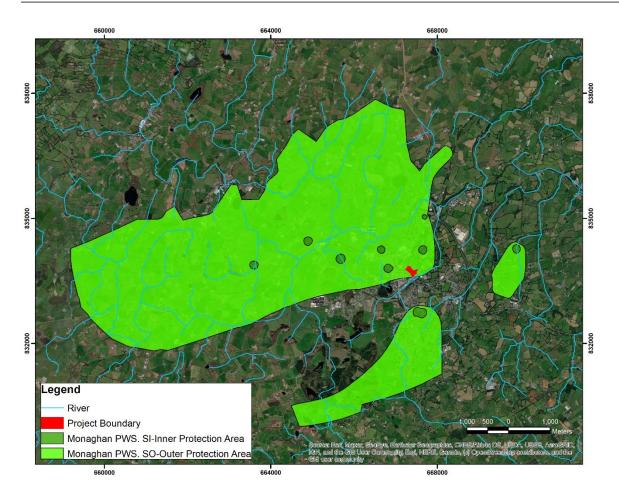


Figure 2-18 Public Supply Source Protection Areas (GSI, 2023)

2.8 MINING

According to Geological Survey Ireland Spatial Resources records, there is currently no mining activity in the vicinity of the site. The nearest Mineral Locality is to the south of the area approximately 4 km away, identified as Gabbro Mining.

2.9 INDUSTRIAL LAND USE

With the records available at the Environmental Protection Agency map viewer, there are no potentially contaminated industrial sites within 250m of the site boundary. Although there is potential that the infilled quarry (at the SE limit of the site) and the description/ type of infill is unknown.

2.10 RADON

As detailed on the Radon Risk Map in Figure 2-19 by the EPA. This map shows a prediction of the number of houses in any one area that are likely to have high radon levels. Those areas in red are most at risk from radon and are called High Radon Areas. The map is based on an analysis of indoor radon

measurements plus geological information including, bedrock type, quaternary geology, soil permeability and aquifer type. The areas of the map in orange and yellow are areas of medium and low risk respectively. The map shows that the site is located in a region of medium risk.

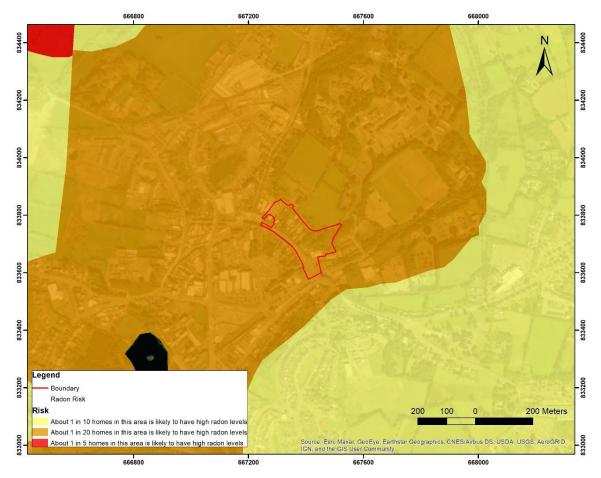


Figure 2-19 Radon Risk (EPA, 2023)

3 INITIAL CONCEPTUAL SITE MODEL

3.1 GENERAL

In line with current Environmental Protection Agency guidance, plausible source, pathway and receptor linkages have been identified for the site. The plausible linkages are indicated in the conceptual site model outlined and discussed in Section 3 of this document.

The project in question, Urban Renewal and Regeneration of Dublin Street and Dublin Street North Backlands is an urban revitalization that will involve earthmoving, levelling, cutting and filling, asphalting, and landscaping. The components of the Conceptual Site Model (CSM) are presented as follows.

3.2 SOURCES

3.2.1 ON-SITE

Current Land Use

- 1) Unknown Nature-Made Ground The made ground beneath the site is unknown in quality and quantity. These materials can contain a high organic content which, if degraded, can produce gases such as methane, carbon dioxide and oxygen-depleted gases. The unknown Made Ground material also has a risk of containing other contaminants, including heavy metals.
- 2) Auto repair shop Oil and fuel leaks from vehicles being repaired or serviced can seep into the ground, introducing hydrocarbons and other harmful chemicals into the soil and groundwater. They often use solvents, degreasers, and various chemicals for cleaning and maintenance. Improper handling or disposal of waste fluids such as coolant, brake fluid, transmission fluid, and antifreeze can lead to the release of hazardous chemicals into the environment. The dismantling and maintenance of vehicle parts can release heavy metals like lead, cadmium, and mercury. Inadequate handling of used batteries can lead to leaks of battery acid, which contains sulfuric acid that can severely contaminate soil and groundwater. Aerosol sprays for painting or cleaning can release volatile organic compounds (VOCs) into the air, some of which can settle onto the ground and potentially infiltrate. Considering that the auto repair shop must follow regulations and best practices, but also considering the occurrence of accidents, contamination from this source should be unlikely, however, further intrusive ground investigation, sampling and testing is recommended to confirm this.
- 3) Laundry Commercial laundries have the potential to cause contamination in soil and groundwater due to the chemicals and pollutants associated with the laundering process. While modern regulations and practices have improved the situation, there are still some concerns to be aware of. Detergents and cleaning agents can contain phosphates, surfactants, solvents like perchloroethylene (PCE is a volatile organic compound VOC), microplastics and heavy metals (such as cadmium, lead, or mercury) and other compounds that, if not managed properly, might find their way into soil and groundwater. Considering that the laundry must follow regulations and best practices, but also considering the occurrence of accidents, contamination from this source should be unlikely, however, further intrusive ground investigation, sampling and testing is recommended to confirm this.
- 4) Oil tanks from existing buildings Oil tanks from residential and commercial buildings can result in soil and groundwater contamination if they are not properly installed,

maintained, and managed. Corrosion, cracks, or improper installation can lead to leaks or spills of oil from the tanks. Petroleum products contain volatile organic compounds that can dissolve in groundwater. Contamination from this source is possible given the age and installation of the tank presented in Appendix A, therefore, further intrusive ground investigation, sampling and testing are recommended to confirm the presence/ absence of hydrocarbon contamination. The location of the fuel storage tanks is also presented in the constraints drawing included in Appendix B.

• Previous / Historical Development

- 5) Previous urban infrastructure Dublin Street and Dublin Street North Backlands have been occupied by infrastructure developments such as commercial properties. These activities historically occurring within the site area are not strongly linked to severe contamination. Consequently, the likelihood of this contamination affecting the current application site is minimal.
- 6) Old infirmary An infirmary is mentioned on the OSI map of 1829-1841, which later no longer appears on the maps of 1897-1913, and the site is referred to as "Lodge". From the maps, the area seems to be located partially within the boundaries of the site. Waste management practices in the 19th century were often less regulated and environmentally conscious than they are today. Waste might have been disposed of in ways that are now recognized as harmful to the environment. Some possibilities of contamination are raised, such as medical/chemical/pharmaceutical waste. It might have involved the use of chemicals like mercury-based compounds, arsenic, and other medicinal substances which could be improper disposal in the soil. Construction materials used in the infirmary, such as lead-based paints, could have deteriorated over time and leached into the soil. Groundwater and ground gas sampling in the vicinity of the old infirmary will be recommended as part of the investigations to provide further confirmation of this.

3.2.2 SURROUNDING

• Current Land Use

- 7) Petrol station A petrol station has a considerable potential to contaminate soil, water and groundwater. Some potential sources of contamination include accidental spills and leaks of gasoline (hydrocarbons) during refuelling, maintenance, or due to faulty equipment. Many petrol stations use USTs to store gasoline. Corrosion or damage to these tanks can lead to leaks, allowing fuel to seep into the surrounding environment. Improper storage of various chemicals for maintenance and cleaning purposes. These spills can result in the direct release of contaminants into the soil, which can migrate into groundwater. "Go Petrol Station" is 200m from the site but downstream from the site and consequently the risk to the site associated with contamination from the petrol station is considered to be low.
- 8) Cemetery The graveyard has been located in the vicinity of the site since at least 1897. This cemetery is located on the border of the Ulster Canal. Cemeteries have the potential to cause soil and groundwater contamination due to the activities and materials associated with burial practices. While modern cemetery management practices and regulations aim to minimize these risks, there are still some concerns to be aware of, such as embalming fluids which can contain formaldehyde and other chemicals and heavy metals from the coffins. Some grave maintenance products, such as fertilizers, pesticides, and herbicides, can introduce chemicals into the soil that might eventually migrate to groundwater. Burial of organic matter can lead to microbial activity in the soil. While decomposition is a natural

process, it can release substances like nitrogen and pathogens that might affect groundwater quality if not managed properly. The cemetery is also downstream from the site, and consequently, the risk to the site associated with contamination from this source is considered to be low.

9) Monaghan Bottlers – An alcoholic beverage wholesaler, if not managed properly, has the potential to cause soil and groundwater contamination through chemical storage and spills of cleaning agents, solvents, and additives. Wastewater generated from cleaning processes and cooling systems used for storing beverages also can potentially be a source of contaminants. This structure is also a considerable distance from the site, and the risk to the site is considered to be low.

Previous / Historical Development

- 10) Old quarry A quarry appears on the OSI maps of 1829-1841 on the SE edges of the site and is no longer mentioned on later maps. A deactivated quarry, if not properly managed, can potentially cause soil and groundwater contamination due to various factors related to its history, activities, and the materials involved. It might have stockpiled materials such as mined rocks, soils, and aggregates. These materials can contain trace amounts of minerals or metals that, if not properly managed, might leach into the soil, watercourse and groundwater. Quarry walls, floors and waste piles can contain mineral deposits that release trace elements, metals, or minerals into the environment. Chemicals, such as explosives or solvents also might have been used during their active phase. When the quarry is deactivated and refilled, this may have potentially contaminated infill potential contaminated infill (e.g. Coal, clinker, dust ash, foul lime, spent oxide, acid tar, coal tar etc.). Possible pollutants linked to fill materials of uncertain origin could encompass metals, inorganic substances, hydrocarbons, asbestos, and subsurface gases. Because the quarry area is not directly in the study area, and because it had already ceased its activities before 1897-1913, the possible sources of contamination from this former activity are considered unlikely, groundwater and ground gas sampling in the vicinity of the old quarry will be recommended as part of the investigations to provide further confirmation of this.
- 11) Gas Works Gas Works are mentioned on the OSI maps of 1829-1841 and 1897-1913 about 300m NEE of our southern boundary and are no longer mentioned on later maps. Historical gas works, which were facilities that produced gas from coal or other carbon-rich materials for lighting and heating before the widespread use of natural gas, have the potential to cause significant soil and groundwater contamination due to the nature of their operations. These facilities often involved the production and distribution of coal gas, which contained various pollutants. While many gas works have been decommissioned or repurposed, their legacy can still pose contamination risks, such as coal tar residues, filling material as such ash, slag, and other waste products. Leaks or spills from underground tanks and piping. The production and use of coal gas involved benzene and other volatile organic compounds (VOCs) and Heavy metals. The historical Gasworks is located a relatively long distance away and on the other side of the River Shambles, which is why the risk associated with contamination from this source to the site is considered to be low.

Potential sources are listed in Table 3-1.

Source	Description	Current or previous land use	Distance
1	Unknown Nature-Made Ground	Current land use	On-site
2	Auto repair shop	Current land use	On-site
3	Laundry	Current land use	On-site
4	Oil tanks from existing buildings	Current land use	On-site
5	Previous urban infrastructure	Previous	On-site
6	Old Infirmary	Previous	On-site
7	Petrol station	Current land use	Surrounding area
8	Cemetery	Current land use	Surrounding area
9	Monaghan Bottlers	Current land use	Surrounding area
10	Old Quarry	Previous	Surrounding area
11	Gas Works	Previous	Surrounding area

Table 3-1 Conceptual Site Model – Sources

3.3 PATHWAYS

The key pathways and receptors considered for the remainder of this section have been identified on the basis that no remedial measures are to be carried out (to determine the likely risks without remediation). The principal exposure pathways pertinent to the site are considered to be:

- Exposure to site users by near-surface contamination from soil and groundwater (through ingestion, inhalation, and skin contact (dermal) routes).
- Migration of contamination/ground gas through permeable granular superficial deposits.
- Migration of the contamination in the superficial and/or bedrock groundwater.
- Accumulation of vapours/ground gases in buildings and structures.
- Direct contact of soils with buried concrete / materials
- Uptake of contamination by plant roots.

3.4 RECEPTORS

"Receptors" are defined in EPA (2013) as "Something that could be adversely affected by a contaminant, e.g. people, a water body (groundwater or surface water), living organism, property or an ecological system. A groundwater receptor could include existing and potential future drinking water supplies, surface water bodies into which groundwater discharges (e.g. streams) and groundwater dependent terrestrial ecosystems (GWDTEs)." Potential receptors at the site are as follows:

3.4.1 HUMANS

The project site currently comprises predominantly continuous urban fabric and a smaller portion of land considered agricultural (pasture). The intended future use of the site is for public gardens, open spaces, access roads and parking. Members of the public, construction workers and future residents are therefore considered potential receptors.

3.4.2 FAUNA AND VEGETATION (ECOLOGY)

There are no specifically identified sensitive ecological receptors on site or within 250m of the site boundary. However, a disturbance is expected in the areas covered by vegetation and their possible ecological population such as small rodents, birds, insects and microbiota. The proposed landscaping will likely consist of a combination of new planting and retention of existing vegetation, which are considered potential receptors.

3.4.3 SURFACE WATER

In the area surrounding the site, there are surface water resources, the River Shambles which crosses the site and the Ulster Canal (50m south of the site), which are considered potential receptors.

3.4.4 GROUNDWATER

The aquifer unit present beneath the site is the Dinantian Lower Impure Limestone and is defined as being Regionally Important Aquifer-Fissured bedrock (Rf). Local groundwater flow is likely to follow the topography in a south-westerly direction, towards the River Shambles. Despite the low permeability, the local aquifer vulnerability is High and Moderate with an average annual recharge ranging from 51-150mm. In addition, the area is considered a Public Supply Source Protection Area. The groundwater is a potential receptor.

3.5 RISK ASSESSMENT

This evaluation is qualitative, as it involves professional expert opinions being employed to evaluate the available data concerning the site's conditions for risk assessment purposes. The structure for conducting these evaluations is detailed in CIRIA C552, titled "Contaminated Land Risk Assessment, a Guide to Good Practice." This guideline stipulates that the evaluation of risk should consider both the probability of an incident occurring and the seriousness of its potential outcomes.

For each identified possible connection to pollutants, one of six risk levels has been assigned. These levels are: Very Low, Low, Low/Moderate, Moderate, High, and Very High. If the risk level is determined to be **Low/Moderate or higher, it signifies that additional assessment**, investigation, or potential remediation steps will be necessary. The subsequent table (Table 3-2) provides a concise overview of the potential connections to pollutants and the corresponding qualitative assessments of risk related to the site.

Considering the analyses carried out and summarized in Table 3-2, the most relevant sources of this risk analysis are Unknown Nature-Made Ground, Auto repair shop, Laundry and Oil tanks from existing buildings.

Sourco	Pocontors (with recentive nethorou)	Risk
Source	Receptors (with receptive pathway) Humans	
1) Unknown Nature-	Fauna And Vegetation (Ecology)	Low/Moderate Low
Made Ground	Surface Water	Low/Moderate
Made Ground	Groundwater	Low/Moderate
	Humans	Low
	Fauna And Vegetation (Ecology)	Low/Moderate
2) Auto repair shop	Surface Water	Low/Moderate
	Groundwater	Moderate
	Humans	Low
	Fauna And Vegetation (Ecology)	Low/Moderate
3) Laundry	Surface Water	Low/Moderate
	Groundwater	Moderate
	Humans	Low
(1) Oil tanks from		
4) Oil tanks from	Fauna And Vegetation (Ecology) Surface Water	Low/Moderate
existing buildings		Low/Moderate
	Groundwater	Moderate
	Humans	Low
5) Previous urban	Fauna And Vegetation (Ecology)	Low
infrastructure	Surface Water	Low
	Groundwater	Low
	Humans	Low
6) Old Infirmary	Fauna And Vegetation (Ecology)	Low
o, o.a,	Surface Water	Low
	Groundwater	Low
	Humans	Low
7) Petrol station	Fauna And Vegetation (Ecology)	Low
, , , et et et et et et et et	Surface Water	Low
	Groundwater	Low
	Humans	Low
8) Cemetery	Fauna And Vegetation (Ecology)	Low
of centerry	Surface Water	Low
	Groundwater	Low
	Humans	Low
9) Monaghan Bottlers	Fauna And Vegetation (Ecology)	Low
9) Wonagnan Bottlers	Surface Water	Low
	Groundwater	Low
	Humans	Low
	Fauna And Vegetation (Ecology)	Low
10) Old Quarry	Surface Water	Low
	Groundwater	Low
	Humans	Low
11) Coo Martin	Fauna And Vegetation (Ecology)	Low
11) Gas Works	Surface Water	Low
	Groundwater	Low

Table 3-2 Risk Assessment

4 POTENTIAL GEOTECHNICAL ISSUES

Based on the available information at the site, the site is expected to be predominantly representative of residential, commercial, greenfield and pasture land - covered by a mixture of natural soils and made ground. The available borehole information from the Geological Survey of Ireland (GSI) is outlined in Section 2.4 and indicates the ground conditions at the site are expected to comprise variable-made ground, overlying cohesive and granular glacial tills and a bedrock formation thought to be muddy limestones and shales. The available site investigation report (IGSL, 2007) is from a neighbouring site and indicates the presence of high-strength glacial tills with a high cobble and boulder content and fails to adequately identify the bedrock lithologies with borehole extending to between 4 and 13mbgl. Regionally the available GSI desk study information would indicate that the bedrock level is variable locally but is expected to be deeper than 5m at the site location.

Project-specific site investigations will be necessary to confirm the information from the desk study, to characterise the ground conditions at the site, collect samples for appropriate contamination testing, and carry out in situ testing and laboratory geotechnical testing of the soils to determine their engineering parameters. The site investigation campaign will be a vital tool for the civils design and optioneering enabling the most cost-effective and appropriate engineering solution.

Several of the borehole logs indicate the presence of peat material between the made ground and glacial till material. It will be essential to try to identify if this material is present at the proposed site location as the presence of peat material could have an influence on the settlement and bearing strengths of any proposed pavements and structures. A suitable engineering solution will need to be employed in areas where peat has been identified such as excavate and replace, surcharging, ground improvement or piled foundation solutions.

The identified presence of both granular and cohesive glacial till materials locally within the available site investigation information would indicate that a site-specific ground model needs to be developed for the project site. The differentiation between a cohesive and granular sub-formation material for spread foundations and pavements will be important in the estimation of settlements and the behaviours of groundwater within any excavations as part of the design.

Large granular material identified within the overburden such as cobbles and boulders could present a risk for any proposed driven piling at the site such as sheet piles. Large grades of granular materials could cause the refusal of a sheet pile at an insufficient depth for the design. This would be assessed following the site investigations and an appropriate piling solution would be designed should this be required as part of the design.

The use of geotechnical in situ and laboratory testing in the proposed site investigation locations will aid in determining the engineering strength parameters for the overburden soils. These will be used in the stability, bearing or settlement assessments for any of the proposed pavements, buildings, retaining structures or cut-and-fill slopes in the earthworks design.

Groundwater monitoring is recommended to determine groundwater conditions and enable effective future design of foundations and other infrastructure.

Investigations will also be required to determine whether there are aggressive soil conditions on site, thus enabling the selection of the appropriate concrete class.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The purpose of this Geoenvironmental Desk Study is to assess potential contamination and geotechnical constraints to the site and provide outline recommendations for additional investigative works required to address any areas of uncertainty.

Reviews of the data set detailed within this report have identified the potential presence of contamination associated with historical uses of the site and the surrounding area. This is primarily associated with the Unknown Nature-Made Ground, Auto repair shop, Laundry and Oil tanks from existing buildings

Considering the current use of the site and the historic use of the site, the risk associated with the site is considered to be Low/Moderate, associated with potential risks to the human, fauna and vegetation, surface water and groundwater.

The information about Radon Gas from EPA in section 2.10 (Figure 2-19 Radon Risk (EPA, 2023) shows that the site is located in a region of medium risk.

5.1.1 GEOTECHNICAL

The following general potential geotechnical constraints to this development have been identified.

- Unconfirmed thickness, characteristics and geotechnical properties of the likely localised Made Ground, and variable natural soils (superficial deposits) within the proposed project area,
- Unconfirmed bedrock depths which have been identified as locally variable during the desktop study,
- Soft pat material has been identified in neighbouring sites. It will be important to identify the presence or absence of this material at the proposed site. If peat material is present on the site, an appropriate engineering solution will be required.
- Highly variable lithologies identified in past site investigations in the area would suggest that the
 overburden soils are of high strength with a high cobble and boulder content. It is important to
 assess these soils further to ensure an adequate earthworks design, particularly in the design of
 any cut slopes and retaining structures.
- The potential for the natural or Made Ground soils to be chemically aggressive towards buried concrete or pipework.

5.2 **RECOMMENDATIONS**

Before the development of the site it is recommended that intrusive investigation works are undertaken to characterise the ground conditions for the following key purposes:

• To characterise the chemical nature of the soils and groundwater across the site, concerning potential human health and water environment risks.

- To investigate the depth, nature and extent of the Made Ground and the underlying till and solid deposits.
- To establish the depth of competent foundation stratum across the site.
- To assess the groundwater conditions beneath the site.
- To assess the potential risk from ground gases.

There is a potential for radon generation on the site, reference should be made to BRE 211 (2015) for details of basic radon protection measures required for new dwellings.

Subject to the design of the detailed site investigation, it is considered that the following minimum works will be required:

- **Trial pitting** across the site to characterise any Made Ground and underlying till deposits and permit recovery of soil samples for subsequent chemical and geotechnical analysis.
- Drilling of **boreholes** to characterise the underlying deposits and depth to a suitable founding stratum, permit recovery of soil samples for geotechnical analysis and allow installation of combined gas/groundwater monitoring wells.
- **Chemical analysis** of the soils and groundwater to assess the potential risk to human health, the water environment and buildings/structures.
- **Geotechnical testing** of the soils and rock, including Standard Penetration Testing (SPT) and laboratory testing to obtain geotechnical design parameters including characteristic testing, assessment of undrained shear strength and friction angle. This may also include the assessment of any made ground for aggressivity toward buried concrete. The findings of the geotechnical assessment will be used for foundation and road design. Given the undulating nature of the site, it is likely earthworks will be required to facilitate drainage design, therefore earthworks testing of the soils is recommended.
- **Ground gas and groundwater level monitoring** of borehole installations and collection of groundwater samples, for subsequent chemical analysis.
- **Surface water monitoring** ideally along both the Shambles and Ulster Canal. As a minimum (where accessible) samples should be obtained on both water bodies, hydraulically up-gradient and down-gradient and directly adjacent to the site.

As part of the recommended site investigations, access should be prohibited areas of Japanese Knotweed growth. A no-dig zone min. 7m offset should be implemented in the vicinity of identified knotweed stands, this is in light of the following: *It is an offence under Article 49 (2) of the European Communities (Birds and Natural Habitats) Regulations 2011 for any person to plant, disperse, allow to grow or cause to disperse, spread or otherwise cause to grow throughout the state any plant included in Part 1 of the Third Schedule. Japanese knotweed is included in the Third Schedule of the Regulations.*

A full Invasive Species Survey and Management Plan will be managed and directed by others, and the suitability of the proposals above will be confirmed by those responsible for this aspect.

5.3 LIMITATIONS

The following limitations for the execution of the project are anticipated:

- Problems accessing the area due to dense vegetation.
- The presence of Japanese knotweed on the site and in the immediate vicinity. In Appendix A there are details of the invasive plant observations.
- Retaining walls, narrow entrances and closed gates also make accessing the area difficult with readily available mechanical ground investigation plant.

This assessment is focused on the development areas provided in Figure 2-1, which comprise areas of semi-private public open space and associated infrastructure. Residential and commercial development which is understood to be undertaken in the hatched areas does not form part of this assessment.

To understand the previous conditions of land use, Ordnance Survey Ireland (OSI) historical maps were analysed, however, due to the lack of historical sequencing (mapping being unavailable for a significant portion of the 20th Century), this assessment also has limitations.

This report has been prepared based on the available information received during the study period. Although every reasonable effort has been made to obtain all relevant information, all potential contaminants, environmental constraints or liabilities associated with the site may not necessarily have been revealed.

Appendix A SITE WALKOVER 16TH AUGUST 2023

Project	23165 Monaghan Dublin Street	
Location	Monaghan, Co. Monaghan	
Date	16/08/2023	
Engineer	Chris Engleman	

Weather: Describe the temperature, cloud cover, rainfall etc.	
21°, sunny inte	rvals.

Activities on site: Describe all activities that you have witnessed on-site including their location and	
	any samples that you are aware have been taken.

Chris Engleman (CE) from GDG drove to site from Dublin and parked on Dublin Street initially.

CE walks up access track from Dublin Street towards TP05, TP07, BH02 and TP08. At the Dublin street entrance this road is 2.4m wide. Access to BH02 and TP08 will require clearance of vegetation and may be limited to areas close to yard.

Japanese knotweed is sighted just outside the site boundary to the north of TP07. CE walked east along the access track which borders the northeast boundary of the site. Access into TP05 and TP07 would be best achieved from this road, where a large, locked gate currently prevents access. Vegetation clearance may be required at these locations.

Further along this road to the SE, access into TP06/BH01 is observed. This location would be best accessed from this track. A large container is observed at this location. The contents of this are unclear. The ramp down from the access track to the driveway appears to be constructed from building debris.

Access into the BH01 and TP04 location is not possible from the northeast due to a large wall.

At the bend in the track NE from BH01, heavy vegetation prevents access. Japense knotweed is spotted within the dense vegetation. Roughly 520m SE from here, the ruins of the former infirmary are visible in a densely forested thicket.

CE continues along the track to the East and turns right onto the footpath leading Southwest towards Old cross square. Footpath is 1.2m wide, with roughly 1m either side of grass verge. The location of TP01 is heavily vegetated. TP02 is on a grassy area close to the footpath.

CE walks to Old Cross Square, noting that the buildings have a large retaining wall behind them. CE then accesses the back of the Shambles bar and notes that no access is possible from here into the proposed locations. Two oil tanks are visible behind the shambles bar. One is metal and slightly rusted, and the other is plastic. Both appear to be sightly raised off the ground.

CE walks to original TP03 location. Location is inaccessible for SI as it is located in a private garden behind a house on Dublin Street, with only a small set of steps allowing access. A plastic oil tank sitting directly on the ground is observed here.

CE walks up access route beside 'Let Us Launder' laundry. Access at this location is 2.1m and 3m high. Gates into TP04 location are locked. Locations require access around a tight bend (~2.3m width).

Access was not possible into former Tp09 location, along with former BH01, TP04, TP03 and TP02 due to vegetation/locked gates.

Most buildings had oil tanks situated behind them. No asbestos was noted.

CE exits site.

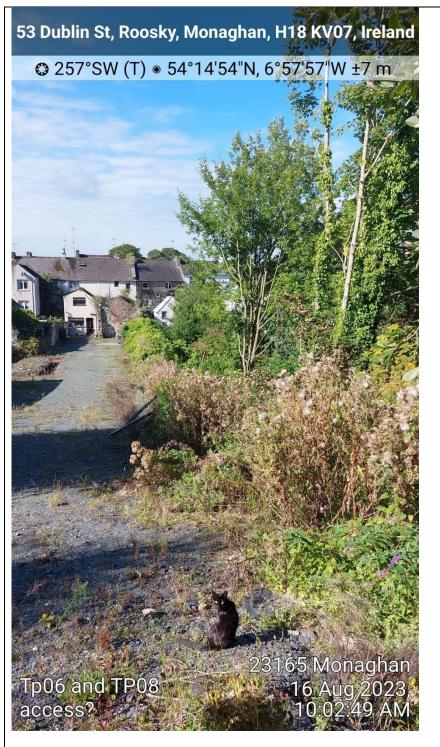
Instructions to Contractor

All instructions must be signed off by the Client first. Provide evidence how this approval was obtained.

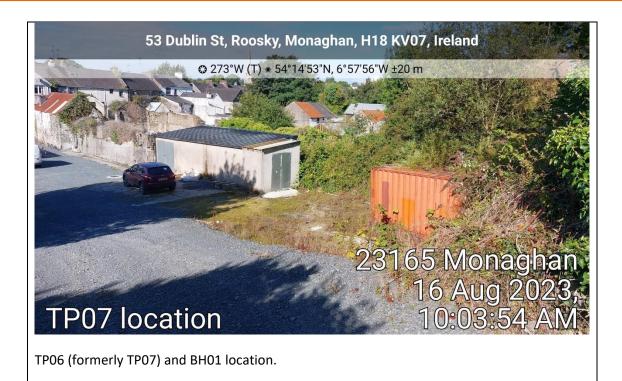
	Detail of instruction	Evidence of approval from Client
1		
2		
3		

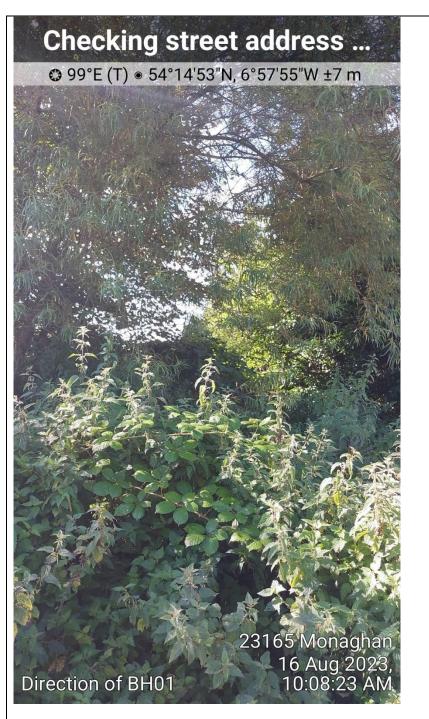
Clarif	Clarifications required from Client	
1		

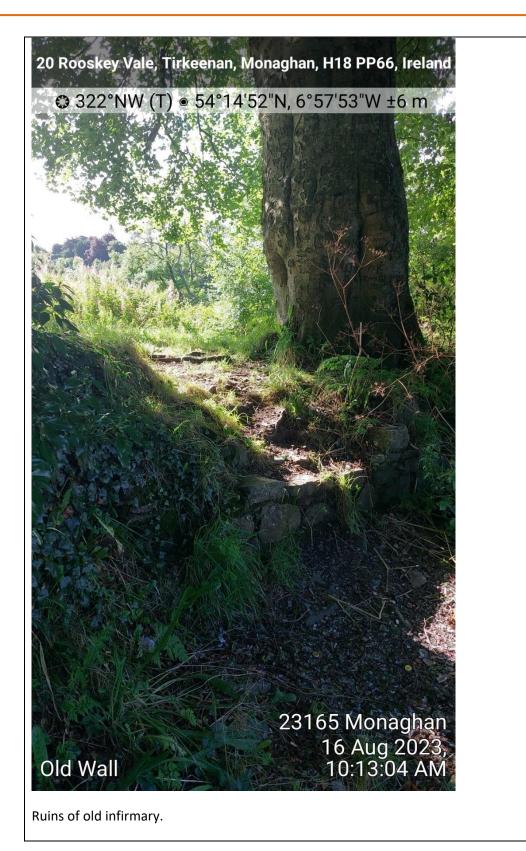
Safety Observations				
Card	Description	Mitigation	Submitted	Closed
No.			by	/Open

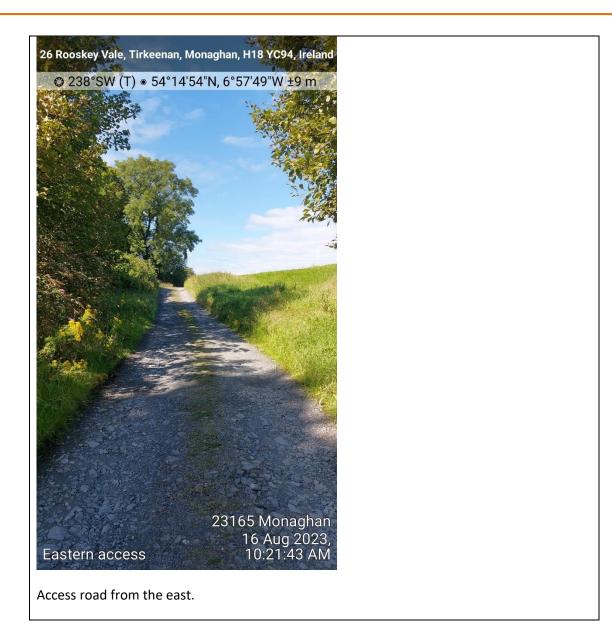

Site Photos 53 Dublin St, Roosky, Monaghan, H18 KV07, Ireland © 56°NE (T) ● 54°14'54"N, 6°57'58"W ±4 m 23165 Monaghan 16 Aug 2023, 9:51:21 AM Japanese knotweed close to TP07.

Access to BH02 and TP08 (formerly TP10).

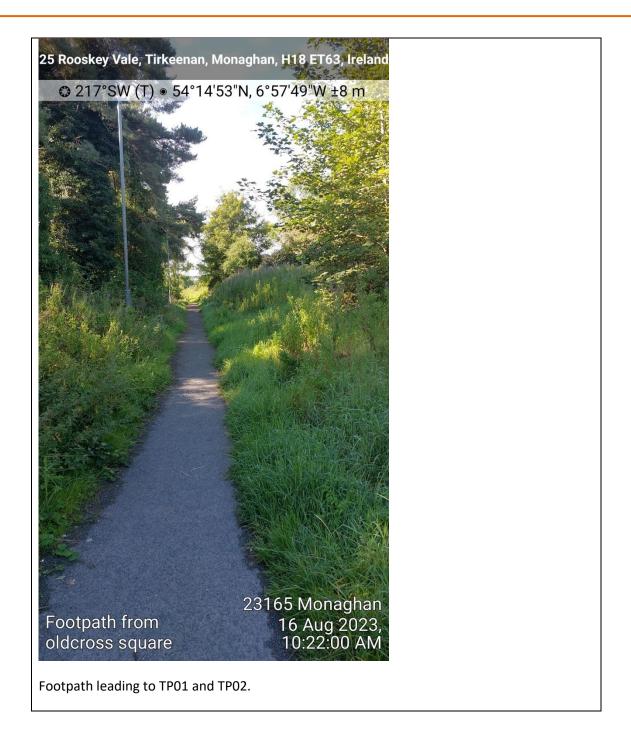


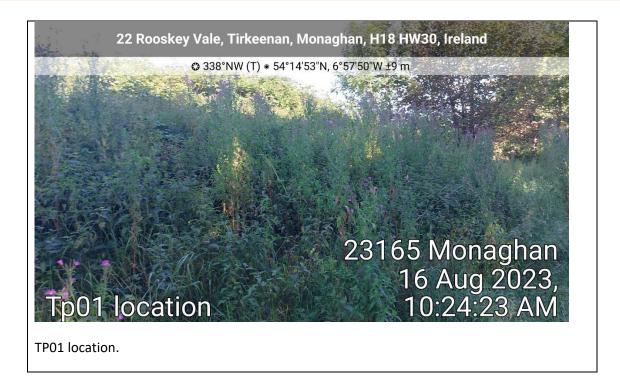

Access to TP07 and TP05 (formerly TP06 and TP08).

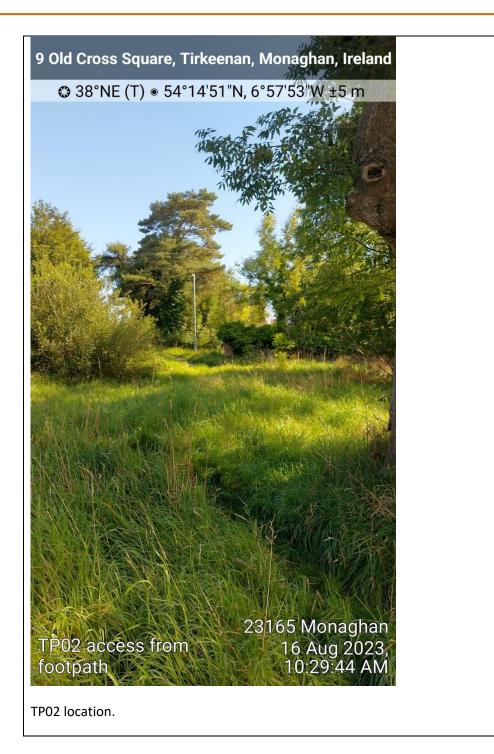


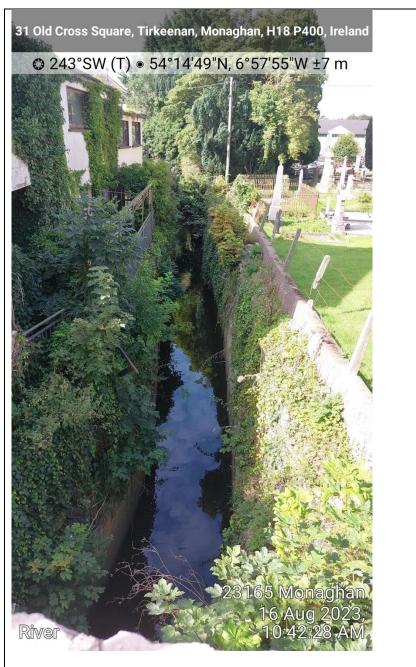


Dense vegetation including Japanese knotweed, looking towards the former BH01 location.

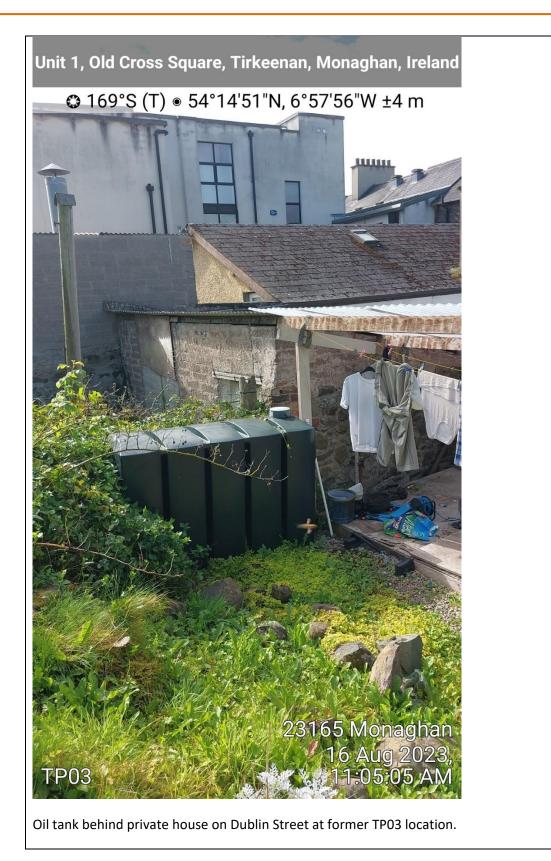








Possible pumping station.


River Shambles close to church.

Oil tanks behind the Shambles bar on Dublin street.

Name:	Signed:
Chris Engleman	ALL

Plate 5: Japanese Knotweed

53 Dublin St, Roosky, Monaghan, H18 KV07, Ireland 55°NE (T) • 54°14'54"N, 6°57'58"W ±6 m

Plate 4: Japanese Knotweed

Plate 3: Japanese Knotweed

Plate 60: Japanese Knotweed

Plate 192: Japanese Knotweed

Plate 61: Japanese Knotweed

Plate 252: Japanese Knotweed

Plate 253: Japanese Knotweed 13 Rooskey Vale, Tirkeenan, Monaghan, H18 E202, Ireland

26 Rooskey Vale, Roosky, Monaghan, H18 YC94, Ireland o 122°E (T) • 54°14'54'N, 6°57'45'W ±8 m 23165 Monaghan 16 Aug 2023, 2:54:58 PM Japanese knotweed

Plate 128: Tanks

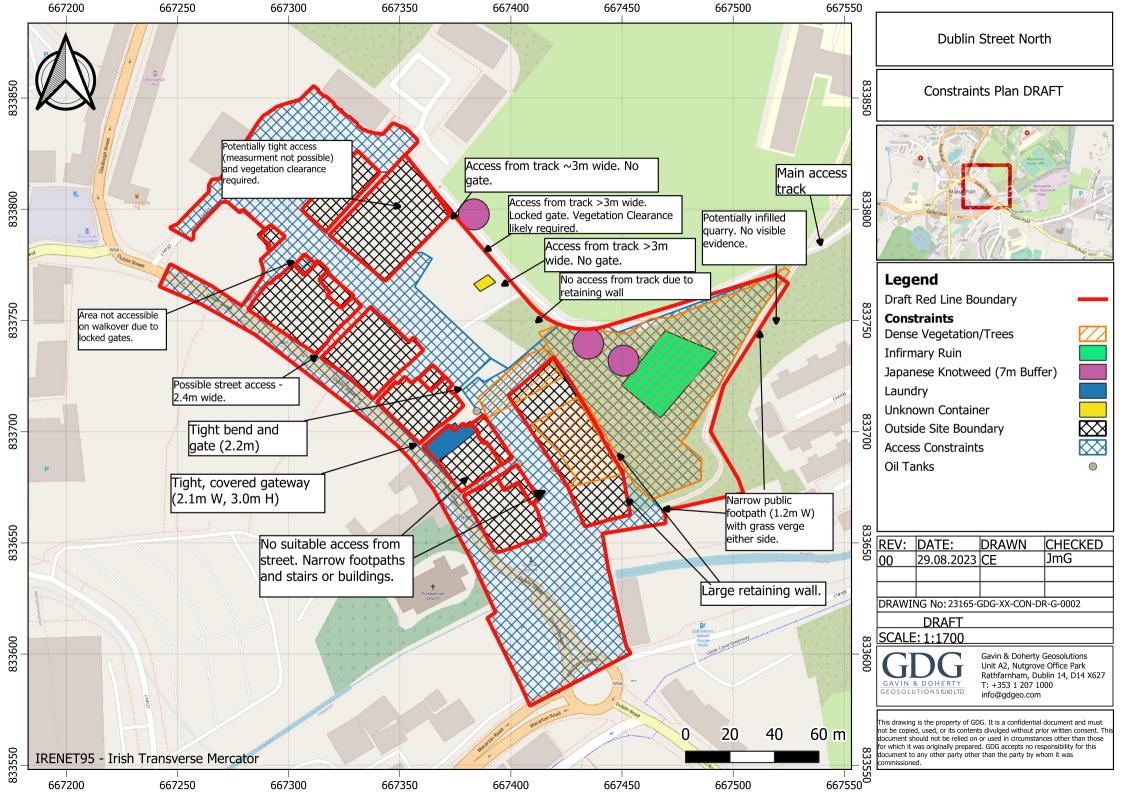

Plate 254: Japanese Knotweed

Plate 151: Tanks

Appendix B SITE CONSTRAINTS DRAWING

GLOBAL PROJECT REACH

Offices

Dublin (Head Office)

Gavin & Doherty Geosolutions Unit A2, Nutgrove Office Park Rathfarnham Dublin 14, D14 X627 Phone: +353 1 207 1000

Belfast

Gavin & Doherty Geosolutions (UK) Limited Scottish Provident Building 7 Donegall Square West Belfast, BT1 6JH

Edinburgh

Gavin & Doherty Geosolutions (UK) Limited 21 Young Street Edinburgh Scotland, EH2 4HU

Rhode Island

Gavin & Doherty Geosolutions Inc. 225 Dyer St, 2nd Floor Providence, RI 02903 USA

Bath

Gavin & Doherty Geosolutions (UK) Limited The Guild High Street, Bath Somerset BA1 5EB

Cork

Gavin & Doherty Geosolutions Unit 4E, Northpoint House, North Point Business Park Cork, T23 AT2P

London

Gavin & Doherty Geosolutions (UK) Limited 85 Great Portland Street, First Floor London W1W 7LT

Utrecht

Gavin & Doherty Geosolutions WTC Utrecht, Stadsplateau 7 3521 AZ Utrecht The Netherlands

Website: <u>www.gdgeo.com</u> Email: <u>info@gdgeo.com</u>

Monaghan Dublin Street – Interpretative Ground Investigation Report

0

Client Document Ref. Project Title Date

> McAdam Design Ltd. 23165-GIR-001-00 Monaghan Dublin Street 24/10/2024

Project Title:	Monaghan Dublin Street
Report Title:	Ground Investigation Report
Document Reference:	23165-GIR-001-00
Client:	McAdam Design Ltd.
Ultimate Client:	Monaghan County Council
Confidentiality	Client Confidential

REVISION HISTORY

Rev	Date	Reason for Issue	Originator	Checker	Reviewer	Approver
00	24/10/2024	For Client comments	JK/RH	AB	PQ	EO

DISCLAIMER

Gavin & Doherty Geosolutions (UK) Ltd. (GDG) has prepared this report for the sole use of McAdam Design Ltd. (hereafter the 'Client') in accordance with the terms of a contract between the Client and GDG. No other warranty, express or implied, is made as to the professional advice contained in the report or any other services provided by GDG. This report is confidential to the Client and may not be shared with or relied upon by any other party without the prior and express written agreement of GDG. GDG assumes no liability or duty of care to any third party in respect of or arising out of or in connection with this report and/or the professional advice contained within.

This report is the copyright of Gavin & Doherty Geosolutions (UK) Ltd. Any unauthorised reproduction or usage (in whole or in part) by any person other than the Client is strictly prohibited.

REVISION SUMMARY

Rev	Date	Section(s)	Detail of Change
-	-	-	-

TABLE OF CONTENTS

Chap	oter		Page
Exec	utive Su	ummary	7
1	Introdu	uction	10
	1.1 1.2 1.3	Description of the Project Geotechnical Category Scope of Report	10 10 11
2	Desk St	itudy	12
	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	Site Description Land use and Historical records 2.2.1 Current Site Use 2.2.2 Current Surrounding Area Use Historical Land Uses Topography Geology 2.5.1 Bedrock Geology 2.5.2 Quaternary Sediments 2.5.3 Soils Hydrology Hydrogeology Mining Industrial Land Use	12 13 13 14 15 16 16 16 17 18 19 22 24 24
3	2.10	Radon d Investigation	24 25
5	3.1 3.2 3.3 3.4	Historic GI Ground Investigation (September 2024) Geoenvironmental Laboratory Testing Contamination Investigation 3.4.1 Contamination Observations 3.4.2 Chemical Analysis 3.4.3 Gas Monitoring	25 26 27 28 28 29 29
4	Ground	d Model	30
	4.1 4.2	Stratigraphic Model Ground Water Conditions	30 32
5	In-situ	tests	33
	5.1 5.2 5.3	Standard Penetration Testing Plate Load Tests 5.2.1 Soakaway Tests Dynamic Probe Records	33 36 36 37
6		atory tests	39
	6.1	Classification Tests 6.1.1 Particle Size Distribution	39 39

6.2 Organic content 42 6.3 Moisture Content 44 6.4 Atterberg Limits 45 6.5 Compaction Testing 49 6.5.1 Optimum Moisture Content Versus Maximum Dry Density 49 6.5.2 Moisture Condition Value 50 6.5.3 California Bearing Ratio (CBR) 51 6.6 Laboratory hand vane test 52 6.7 Point load Tests 53 7 Characteristic Geotechnical Parameters 54 7.1.1 Characteristic Geotechnical parameters 54 7.1.2 Unit Weight 56 7.1.4 Angle of Shearing Resistance 60 7.1.5 Young's Modulus 62 7.1.6 Coefficient of Volume Compressibility 62 7.1.7 Summary of characteristic geotechnical parameters 65 8 Contamination Assessment 66 8.1 Conceptual Site Model 66 8.2 Ground Gas 68 8.3 Water Environment Risk Assessment Conclusions 71 8.3 Water Environme		c a		40
6.4Atterberg Limits456.5Compaction Testing496.5.1Optimum Moisture Content Versus Maximum Dry Density496.5.2Moisture Condition Value506.5.3California Bearing Ratio (CBR)516.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1.1Characteristic Geotechnical parameters547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Sharing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Conceptual Site Model668.1Conceptual Site Model668.2.2Ground Gas688.3.1Surface Water Receptor698.3.2Groundwater Receptor698.3.3Water Environment Risk Assessment688.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.1Geotechnical assessment7810.2.1Propoed Use7811References80Appendix A – Factual reports82			-	
 6.5 Compaction Testing 6.5 Compaction Testing 6.5.1 Optimum Moisture Content Versus Maximum Dry Density 6.5.2 Moisture Condition Value 6.5.3 California Bearing Ratio (CBR) 6.6 Laboratory hand vane test 6.7 Point load Tests 7 Characteristic Geotechnical Parameters 7.1 Selection of Characteristic Geotechnical parameters 7.1.2 Unit Weight 7.1.3 Undrained Shear Strength 7.1.4 Angle of Shearing Resistance 7.1.5 Young's Modulus 7.1.6 Coefficient of Volume Compressibility 7.1.7 Summary of characteristic geotechnical parameters 8.1 Conceptual Site Model 8.2 Human Health Assessment 8.3.1 Surface Water Receptor 8.3.3 Water Environment Risk Assessment Conclusions 8.3.1 Surface Water Receptor 8.3.3 Water Environment Risk Assessment Conclusions 7.1 Geotechnical assessment 8.5 Soil Disposal 72 9 Geotechnical assessment 10.1 Geotechnical assessment 10.2.1 Proposed Use 78 79 Appendix A – Factual reports 				
6.5.1Optimum Moisture Content Versus Maximum Dry Density496.5.2Moisture Condition Value506.5.3California Bearing Ratio (CBR)516.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength567.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2.2Ground Gas688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			-	
6.5.2Moisture Condition Value506.5.3California Bearing Ratio (CBR)516.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82		6.5	Compaction Testing	49
6.5.3California Bearing Ratio (CBR)516.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.3.1Surface Water Receptor708.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.1Geoenvironenntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			6.5.1 Optimum Moisture Content Versus Maximum Dry Density	49
6.5.3California Bearing Ratio (CBR)516.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.3Water Environment Risk Assessment688.3.3Water Environment Risk Assessment688.3.4Buildings and Structures718.4Buildings and Structures718.5Soil Disposal7710.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			6.5.2 Moisture Condition Value	50
6.6Laboratory hand vane test526.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment688.3.1Surface Water Receptor698.3.2Ground Gas888.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			6.5.3 California Bearing Ratio (CBR)	51
6.7Point load Tests537Characteristic Geotechnical Parameters547.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7810.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82		6.6	• · · ·	
7 Characteristic Geotechnical Parameters 54 7.1 Selection of Characteristic Geotechnical parameters 54 7.1.1 Characteristic SPT N value 54 7.1.2 Unit Weight 56 7.1.3 Undrained Shear Strength 58 7.1.4 Angle of Shearing Resistance 60 7.1.5 Young's Modulus 62 7.1.6 Coefficient of Volume Compressibility 62 7.1.7 Summary of characteristic geotechnical parameters 65 8 Contamination Assessment 66 8.1 Conceptual Site Model 66 8.2 Ground Gas 68 8.3.1 Surface Water Receptor 69 8.3.2 Groundwater Receptor 69 8.3.3 Water Environment Risk Assessment Conclusions 71 8.4 Buildings and Structures 71 8.4 Buildings and Structures 71 8.5 Soil Disposal 72 9 Geotechnical assessment 73 10.1 Geotechnical assessment 78 10.2.1 Proposed U				
7.1Selection of Characteristic Geotechnical parameters547.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.3.1Surface Water Receptor698.3.2Ground Water Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.1References80Appendix A – Factual reports82	_			
7.1.1Characteristic SPT N value547.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor708.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical assessment7710.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82	7	Chara	cteristic Geotechnical Parameters	54
7.1.2Unit Weight567.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Conceptual Site Model668.1Conceptual Site Model668.2Human Health Assessment668.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.3In References80Appendix A – Factual reports82		7.1	Selection of Characteristic Geotechnical parameters	54
7.1.3Undrained Shear Strength587.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			7.1.1 Characteristic SPT N value	54
7.1.4Angle of Shearing Resistance607.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3.1Surface Water Receptor698.3.1Surface Water Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			7.1.2 Unit Weight	56
7.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			7.1.3 Undrained Shear Strength	58
7.1.5Young's Modulus627.1.6Coefficient of Volume Compressibility627.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			7.1.4 Angle of Shearing Resistance	60
7.1.6Coefficient of Volume Compressibility 7.1.762 Summary of characteristic geotechnical parameters628Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment 10.2.17811References80Appendix A – Factual reports82				62
7.1.7Summary of characteristic geotechnical parameters658Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor698.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82				
8Contamination Assessment668.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82				
8.1Conceptual Site Model668.2Human Health Assessment668.2.2Ground Gas688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.1References80Appendix A – Factual reports82	_		, 6 1	
8.2Human Health Assessment668.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7810.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82	8	Conta	mination Assessment	66
8.2.2Ground Gas688.3Water Environment Risk Assessment688.3.1Surface Water Receptor698.3.2Groundwater Receptor708.3.3Water Environment Risk Assessment Conclusions718.4Buildings and Structures718.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7710.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82		8.1	Conceptual Site Model	66
8.3 Water Environment Risk Assessment 68 8.3.1 Surface Water Receptor 69 8.3.2 Groundwater Receptor 70 8.3.3 Water Environment Risk Assessment Conclusions 71 8.4 Buildings and Structures 71 8.5 Soil Disposal 72 9 Geotechnical Risk register 73 10 Conclusions 77 10.1 Geotechnical assessment 77 10.2 Geoenvironemntal assessment 78 10.2.1 Proposed Use 78 11 References 80 Appendix A – Factual reports 82		8.2	Human Health Assessment	66
 8.3.1 Surface Water Receptor 8.3.2 Groundwater Receptor 8.3.3 Water Environment Risk Assessment Conclusions 8.4 Buildings and Structures 8.5 Soil Disposal 72 9 Geotechnical Risk register 73 10 Conclusions 10.1 Geotechnical assessment 10.2 Geoenvironemntal assessment 10.2.1 Proposed Use 11 References 80 Appendix A – Factual reports 			8.2.2 Ground Gas	68
8.3.2 Groundwater Receptor 70 8.3.3 Water Environment Risk Assessment Conclusions 71 8.4 Buildings and Structures 71 8.5 Soil Disposal 72 9 Geotechnical Risk register 73 10 Conclusions 77 10.1 Geotechnical assessment 77 10.2 Geoenvironemntal assessment 78 10.2.1 Proposed Use 78 11 References 80 Appendix A – Factual reports 82		8.3	Water Environment Risk Assessment	68
8.3.2 Groundwater Receptor 70 8.3.3 Water Environment Risk Assessment Conclusions 71 8.4 Buildings and Structures 71 8.5 Soil Disposal 72 9 Geotechnical Risk register 73 10 Conclusions 77 10.1 Geotechnical assessment 77 10.2 Geoenvironemntal assessment 78 10.2.1 Proposed Use 78 11 References 80 Appendix A – Factual reports 82			8.3.1 Surface Water Receptor	69
8.3.3 Water Environment Risk Assessment Conclusions 71 8.4 Buildings and Structures 71 8.5 Soil Disposal 72 9 Geotechnical Risk register 73 10 Conclusions 77 10.1 Geotechnical assessment 77 10.2 Geoenvironemntal assessment 78 10.2.1 Proposed Use 78 11 References 80 Appendix A – Factual reports 82			8.3.2 Groundwater Receptor	70
8.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7710.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			·	71
8.5Soil Disposal729Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7710.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82		8.4	Buildings and Structures	71
9Geotechnical Risk register7310Conclusions7710.1Geotechnical assessment7710.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82		8.5	-	72
10 Conclusions7710.1 Geotechnical assessment7710.2 Geoenvironemntal assessment7810.2.1 Proposed Use7811 References80Appendix A – Factual reports82	٩	Geote	·	73
10.1Geotechnical assessment7710.2Geoenvironemntal assessment7810.2.1Proposed Use7811References80Appendix A – Factual reports82			-	
10.2Geoenvironemntal assessment 10.2.178 7811References80Appendix A – Factual reports82	10	Conclu	usions	77
10.2.1Proposed Use7811References80Appendix A – Factual reports82		10.1	Geotechnical assessment	77
11 References80Appendix A – Factual reports82		10.2	Geoenvironemntal assessment	78
Appendix A – Factual reports 82			10.2.1 Proposed Use	78
	11	Refere	ences	80
	Appendix A – Factual reports			82
				83

LIST OF TABLES

Table 1-1: Summary of Engineering Ground Model and Interpreted Design Parameters	8
Table 2-1: Site History	14
Table 2-2: River water quality	21
Table 3-1: Summary of the geoenvironmental testing	27
Table 4-1: Description of the soil material encountered across the Site	30
Table 5-1: Summary of SPT results	33
Table 5-2: Plate bearing test results	36
Table 5-3: Soakaway test results	37
Table 6-1: Summary of organic content results	43
Table 6-2: Moisture content summary	45
Table 6-3: Summary of Liquid limit, Plastic limit and Plasticity Index test results	46
Table 6-4: OMC vs. maximum dry density results	50
Table 6-5: Moisture Condition Value summary	50
Table 6-6: CBR results summary from DCP – 2024 GI	51
Table 6-7: CBR test results – historic GI	52
Table 7-1: Summary of characteristic SPT N values	55
Table 7-2: Unit weight results from laboratory measurements	56
Table 7-3: Unit weight estimates from empirical data presented in BS 8004:2015	57
Table 7-4: Characteristic unit weight values	58
Table 7-5: Summary of undrained shear strength values from Stroud (1989)	59
Table 7-6: Characteristic undrained shear strength	59
Table 7-7: Range of Eu and E' values	62
Table 7-8: Characteristic Eu and E'	62
Table 7-9: Summary of the characteristic coefficient of volume compressibility values	64
Table 7-10: Summary of the recommended characteristic geotechnical parameters	65
Table 8-1: Summary of Asbestos results	67
Table 8-2: Summary of Metal Screening Value Exceedances	67
Table 8-3: Summary of Soil Leachate Results Screened against Surface Water Criteria	69
Table 9-1: Geotechnical Risk Register	74

LIST OF FIGURES

Figure 1-1: Illustrative Plan (Drawing number: DBL-OPE-00-XX-DR-L-901306)	11
Figure 2-1: Site boundary	12
Figure 2-2: Land use (Corine 2018, EPA 2023)	14
Figure 2-3: Topography	16
Figure 2-4: Bedrock Geology (GSI, 2024)	17
Figure 2-5: Quaternary Geology (GSI, 2024)	18
Figure 2-6: Irish soils at the Site (Teagasc, 2024)	19
Figure 2-7: Blackwater Catchment	20
Figure 2-8: Site hydrography	20
Figure 2-9 Flood Risk (EPA, 2024)	21
Figure 2-10: Historic Flood Maps produced (GSI, 2024)	22
Figure 2-11: Subsoil Permeability (GSI, 2024)	23
Figure 2-12: National Groundwater Vulnerability Ireland (GSI, 2024)	23
Figure 2-13: Radon Risk (EPA, 2023)	24
Figure 3-1: 2024 GI and Historic Site Investigation Layout Plan	26
Figure 3-2: Ground investigation plan (Causeway Geotech, 2024)	27
Figure 4-1: Stratigraphic model – 2024 GI with elevation (top) and depth (bottom)	31

Figure 4-2: Stratigraphic model – IGSL Site 1	31
Figure 4-3: Stratigraphic model – IGSL Site 2	31
Figure 5-1: Uncorrected SPT N values – 2024 GI with depth (left) and elevation (right)	34
Figure 5-2: Uncorrected SPT N values – IGSL - Site1&2	35
Figure 5-3: Uncorrected SPT N – all datasets	35
Figure 5-4: Dynamic Probes results for Made Ground (left) and Glacial Till (right) - IGSL Site 2	38
Figure 6-1:PSD results of Glacial Till (Cohesive) and Made Ground – 2024 GI	39
Figure 6-2: Percentage of soil constituents – 2024 GI	40
Figure 6-3: PSD results of Glacial Till (Cohesive) and Glacial Till (Granular) – IGSL - Site 1&2	40
Figure 6-4: Percentage of soil constituents – IGSL – Site1&2	41
Figure 6-5: PSD results of Made Ground, Glacial Till (Cohesive), and Glacial Till (Granular) – all	
datasets	41
Figure 6-6: Percentage of soil constituents – all dataset	42
Figure 6-7: Organic content- 2024 GI	44
Figure 6-8: Organic content - all datasets	44
Figure 6-9: Moisture Content – 2024 GI (left) and all dataset (right)	45
Figure 6-10: Atterberg Limits results – 2024 GI	46
Figure 6-11: Atterberg Limits results - all data datasets	47
Figure 6-12: BS5930:2015 plasticity chart	48
Figure 6-13: BS 5930:2015 plasticity chart – 2024 GI	49
Figure 6-14: BS 5930:2015 plasticity chart –-all datasets	49
Figure 6-15: MCV vs. MC results	51
Figure 6-16: Limestone rock UCS profile	53
Figure 7-1: Uncorrected SPT N values with converted dynamic probes results for each soil layer with	th
depth	56
Figure 7-2: Figure 1 (left) and Figure 2 (right) of BS 8004:2015	57
Figure 7-3: Correlation between SPT'N' and undrained shear strength (Stroud, 1989)	58
Figure 7-4: Undrained shear strength vs depth profile	60
Figure 7-5: I.P. vs angle of shearing resistance (Sladen and Wrigley, 1983) for cohesive material	61
Figure 7-6: Correlation between SPT'N' and the coefficient of volume compressibility (Stroud and	
Butler, 1975)	63
Figure 7-7: Coefficient of volume compressibility m _v values for Glacial Till (Cohesive)	64

EXECUTIVE SUMMARY

Gavin and Doherty Geosolutions (UK) Ltd. (GDG) was requested by McAdam Design Ltd. to complete a Ground Investigation Report (GIR) for the geotechnical design of Dublin Street North Regeneration in Monaghan Town.

This GIR discusses the ground investigations and geoenvironmental assessment associated with the proposed Dublin Street North redevelopment, Co. Monaghan. The GIR includes the development of an engineering geological model of the study area and defines geotechnical parameters for the geotechnical design of the civil infrastructure associated with the development. This assessment is based on the following:

- 1. A desk study of high-level data from various online mapping databases,
- 2. Scheme-specific ground investigations consisting of
 - cable percussive boreholes
 - trial pitting
 - a suite of geotechnical and chemical laboratory tests and
- 3. Published and unpublished case histories.

It is highlighted that the geotechnical information detailed within this document is limited to the soil information made available at the time of writing. The latest information used in this revision of the report was taken from Dublin St.North, Monaghan, report no.24-0640 (September 2024) factual report prepared by Causeway Geotech Ltd. Any additional information which may become available following the issue of this GIR shall be reviewed and incorporated into a later revision of this GIR which may result in alterations to the proposed geotechnical parameters.

In general, the subsurface geology includes Topsoil, overlying Made Ground, overlying Cohesive and Granular Glacial Till, overlying limestone. Bedrock was encountered only in 2 rotary cores during the historic GI works and as a result, the lithology of the bedrock could not be confirmed in the Site area, nor could its geotechnical parameters be assessed. The anticipated depths and thickness of the underlying soil and rock stratigraphy have been summarised for the proposed development area.

The results of in-situ tests (Standard Penetration Tests, geotechnical laboratory tests have been reviewed in this GIR. The anticipated geotechnical parameters associated with each stratum have been presented based on the factual GI information received to date. The groundwater levels recorded during the GI were also studied to determine the most probable groundwater level.

Geoenvironmental assessment of the investigation data concerning human health and the wider environment, including water environment, and buildings & structures was carried out. The results indicated the presence of asbestos fibres, lead and metal in Made Ground within a localised area to the rear of the existing residential properties, north of the site. It is recommended that If any unforeseen contamination be identified during earthworks or construction (e.g. hydrocarbon impacted soils, asbestos, etc.), then work in such areas should be halted until a suitably qualified

professional has been consulted to assess the situation and provide advice. Moreover, the desk study ascsciated with radon levels shows that the site is in a region of Medium risk, where approximately 1 in 20 properties may have elevated indoor radon measurements, and consequently any future residential development should consider the possible requirement for radon mitigation measures.

The Dublin Street North redevelopment will require geotechnical designs which have been discussed from a high level in this GIR. A summary of geotechnical parameters is provided in Table 1-1.

Interpreted Geological Stratum		Made Ground	Glacial Till (Cohesive) ^{a, b}	
	Soil Classification	Variable	CL, CI	
	w _N (%)	16 – 20% (18%)	12 – 42% (19%)	
	w∟ (%)	39 – 55% (47%)	28 – 45% (35%)	
	W _P (%)	16	13 – 25% (18%)	
Classification	Plasticity Index (%)	23	10 – 27% (17%)	
clussification	Liquidity Index	0.09	-0.42 - 1.0 (0.1)	
	γ (kN/m³)	20	20	
	m _v (m²/MN)	0.17	0.42 for z<2m BGL Min (0.035, $\frac{1}{7.8z-10.8}$) for z >2m BGL	
	Effective Peak Friction Angle φ' (°)	30	30	
Strength	Effective Cohesion c' (kN/m²)	0	0	
	Undrained Shear Strength c _u (kN/m ²)	60	44 for z ≤ 2m BGL Min (258.5, 71.5z-99) for z >2m BGL	
Deformation	Drained Young's Modulus E' (MPa)	24	17.6 for z ≤ 2m BGL Min (103, 28.6z-39.6) for z >2m BGL	
Deformation	Undrained Young's Modulus E _u (MPa)	30	22 for z≤2m BGL Min (129, 35.8z-49.5) for z >2m BGL	
Geohazard		Potential for oversized particles such as concrete, brick, stones, ceramics, roots, timber and plastic. Made Ground may vary in composition and engineering behaviour over short distances. High organic odour to be encountered in the material.	Potential for gravels and oversized particles (Glacial Till – Granular) to be encountered in the material and could affect temporary works due to its high permeability. Potential for settlement of any ground bearing structures	

Table 1-1: Summary of Engineering Ground Model and Interpreted Design Parameters

Interpreted Geological Stratum	Made Ground	Glacial Till (Cohesive) ^{a, b}
	Groundwater is influenced by the tidal range and any excavations should consider the most onerous tidal range. Sand and gravel content in the material may result in quicker than anticipated transition to drained strength characteristics. Asbestos, lead and metals were identified in Made Ground located to the rear of the existing residential properties, north of the site.	during either temporary or permanent works. High organic odour to be encountered in the material. Groundwater is influenced by the tidal range and any excavations should consider the most onerous tidal range.

Notes

* Values in () indicates average value

^a z is the depth (m) from 0.0m BGL

^b Glacial Till (Granular) was confirmed by Particle Size Distribution (PSD) results carried out in samples retrieved from historic holes located outside the examined Site boundary. Also, in the absence of sufficient site-specific data (limited no. of SPT N data and with low reliability as SPT N values are 'refusals'), the characteristic parameters for Glacial Till (Granular) were not defined in this GIR.

1 INTRODUCTION

Gavin and Doherty Geosolutions (UK) Ltd. (GDG) was engaged by McAdam Design Ltd. to complete a Ground Investigation Report (GIR) for a proposed redevelopment on the Land North of Dublin Street, Monaghan. The proposed works are part of the Monaghan County Council Regeneration Scheme for Dublin Street and its backlands in Monaghan Town.

This GIR provides an interpretation and summary of the relevant desk study information, ground investigation (GI) information, in-situ, geotechnical and geoenvironmental laboratory soil testing. This report outlines summary design parameters for use in the preliminary design of the proposed development infrastructure.

The principal parties of the project are:

- Monaghan County Council in the main contract,
- McAdam Design Ltd is the Consulting Engineer and Employer's Representative in the main contract,
- GDG is the geotechnical sub-consultant to McAdam Design UK Ltd, and
- Causeway Geotech Ltd. (Causeway) is the ground investigation contractor.

1.1 DESCRIPTION OF THE PROJECT

The proposed development is part of the Regeneration plan prepared on behalf of Monaghan County Council, which envisages the redevelopment of an area located on Dublin Street North. As stated in Regeneration Plan 'The plan area benefits from an existing Dublin Street Local Area Action Plan, 2011 (LAAP 2011) [13] . The LAAP 2011 proposes a new street to the rear of Dublin Street, with infill and new mixed-use development, and a new interim surface car parking area of 0.5ha, with amenity and recreational area. There are also proposed improved pedestrian links, and local access from the new street to The Diamond and Old Cross Square.")[13] The site is located across a mixed use of land types some residential and some of past industrial use. The indicative site layout, provided by the client as the Public Consultation Design - Illustrative Plan, is outlined in Figure 1-1.

1.2 GEOTECHNICAL CATEGORY

The scheme has been identified as Geotechnical Category 2 according to I.S. EN 1997-1:2005+A1: 2013 in that it includes only conventional types of structure with no exceptional risk or difficult ground or loading.

Figure 1-1: Illustrative Plan (Drawing number: DBL-OPE-00-XX-DR-L-901306)

1.3 SCOPE OF REPORT

This GIR is prepared in accordance with I.S. EN 1997-1:2005 and the 2015 AGS Guide to Good Practice in Writing Ground Reports. The scope of this GIR is summarised as follows:

- Carry out a desk study for the Site to include:
 - A review of the historical maps from the GeoHive,
 - A review of the Geological Survey Ireland (GSI) and online geological mapping data,
 - A review of the Google Earth Imagery.
- Summarise details of the ground investigations undertaken as part of this report and previous Ground Investigations (GIs),
- Present the interpreted ground conditions and material properties for the main geological units encountered across the scheme, and
- Develop a ground model and discuss the ground conditions highlighting any variability and uncertainties.

2 DESK STUDY

2.1 SITE DESCRIPTION

The Site is in the town of Monaghan, which is the county town of County Monaghan, Republic of Ireland. The ITM Reference for the approximate centre of the site is 667400 Easting, 833700 Northing and the location is shown Table 2-1. The Site is located to the northeast of the town centre, extending from the Diamond Centre to the northwest, south-eastwards along Dublin Street, and is defined to the southeast by Old Cross Square. The surrounding area is characterised by a mix of retail, commercial, community, residential and ecclesiastical building as well as surface car parking.

The plan area is defined by the residential terraces on Dublin Street to the southwest and their long rear gardens that extend to the north. Historically, the rear gardens extended to the wall that formerly enclosed St. Davnet's 20th-century development, resulting in the introduction of an informal access road to the rear and various backland developments, including commercial premises.

This assessment is focused on the development areas shown in Figure 2-1, which comprise areas of semi-private public open space and associated infrastructure. Residential and commercial development which will take place in the hatched areas does not form part of this assessment.

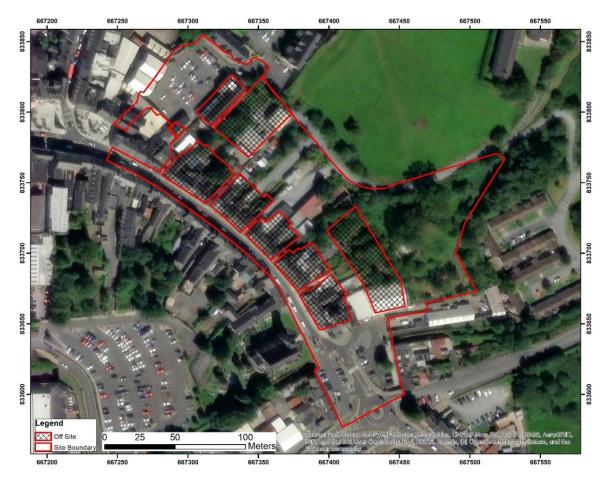


Figure 2-1: Site boundary

The proposed redevelopment scheme would comprise:

- New shared surface 'Russel Row' to the rear of properties fronting Dublin Street,
- Resurfacing of Dublin Street, new pedestrian pavements, relocation of car parking spaces
- Temporary car park/ event space,
- Urban civic spaces,
- New public park,
- Future development plots,
- Landscaping, lighting, upgrading of services.

2.2 LAND USE AND HISTORICAL RECORDS

2.2.1 CURRENT SITE USE

The site comprises mixed commercial and residential land. This consists of professional services, including solicitor's offices, commercial uses including retail units, laundry, clothing, footwear, salons, a public house, a restaurant, a PVC windows supplier, an auto repair shop and a guest house. Commercial premises have also developed to the rear, including a furniture factory. A number of the shops extended the retail use to the full width of the property. There are also several vacant shops along the street and the backland areas are substantial but underutilised.

2.2.2 CURRENT SURROUNDING AREA USE

The surrounding area is best described as the town centre, comprising a mix of uses, including residential and a mix of small to medium-scale retail uses based on the traditional narrow plot street pattern on Glaslough Street, the Diamond Centre, Dublin Street and Market Square. Agricultural land is present to the north of the site.

The map in Figure 2-2 extracted from the Corine Land Cover 2018 (EPA) which shows the land use classifications for the site and its surroundings. The dataset is based on the interpretation of satellite imagery and national in-situ vector data. The project boundaries fall into two classes 'Continuous urban fabric' (purple hatching) for the largest area and a smaller area classified as 'Pastures' (green hatching).

Figure 2-2: Land use (Corine 2018, EPA 2023)

2.3 HISTORICAL LAND USES

The history of the site has been reviewed using historical Ordnance Survey Ireland (OSI) maps dating:

- 6 Inch First Edition Colour/ B&W (1829-1841)
- 25 Inch B&W (1897-1913)
- 6 Inch Last Edition B&W (1913)

Google Earth viewer has been used to cover the period 1985 – 2023. A summary of the historical land use is provided in Table 2-1.

Table 2-1: Site History

Date	On-site land use	Surrounding environs
1829 - 1841	The buildings are present in a similar locality to the present day. The northeastern portion of the site has no buildings of note and is covered in pastures. Shambles Bridge and Old Cross Square are identified in the south of the site.	An old infirmary and quarry can be seen near the south-eastern edge of the site. The canal bridge is located to the south of the site. The 'Diamond Centre' area to the north of the site is also present, as is Monaghan Lake (later called Peter's Lake).

Date	On-site land use	Surrounding environs
	The present-day street network exists at this time with Dublin Street, Dawson Street and Male Road. Monaghan was a well-established townland in this period.	Gaol (West of Monaghan Lake) - 400- 500m NW of the Diamond Carpark.
1897-1913	As above the site remains partly covered by buildings and partly by pastureland.	The location where the infirmary used to be is now called the 'Lodge'. There is a symbology of a landform break in the area where the quarry used to be, apparently, the quarry no longer operated at this time. The area where there used to be a Gaol is now identified as Monaghan County Infirmary. Smithy/ Blacksmith – 20m east of the site's southern boundary. Gasworks - about 300m NEE of our southern boundary. A graveyard is identified to the east of Old Cross Square at the rear of the Presbyterian Church.
1913	In a similar way as before, the site is still partly covered by buildings and partly by pastureland.	There is an area of pasture in the region where the quarry used to be. The area where there used to be a Monaghan County Infirmary is now identified as a County Hospital. Laundry is also located to the north of the hospital. Gasworks are mentioned in the same area. The graveyard and church are identified on the map. A pump station is located 90m to the southwest of the site. A Sawmill/ Creamery are present - 80m South of Dublin Street on the banks of the Shambles.
Google Earth 1985 - 2023	The site does not experience any significant changes during this period.	The surrounding area experiences minor alternation and new builds.

2.4 TOPOGRAPHY

The landform of the region is presented in Figure 2-3, with elevations on the site varying between 70.0m Above Ordnance Datum (AOD) (in the east) and 60.0 m AOD (in the south), approximately. The base level of the region and the site are the Ulster Canal and the River Shambles, which on the site are at elevations of around 59.0m AOD.

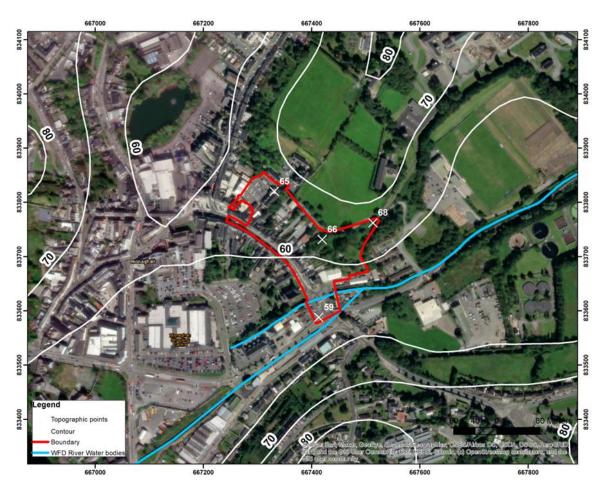
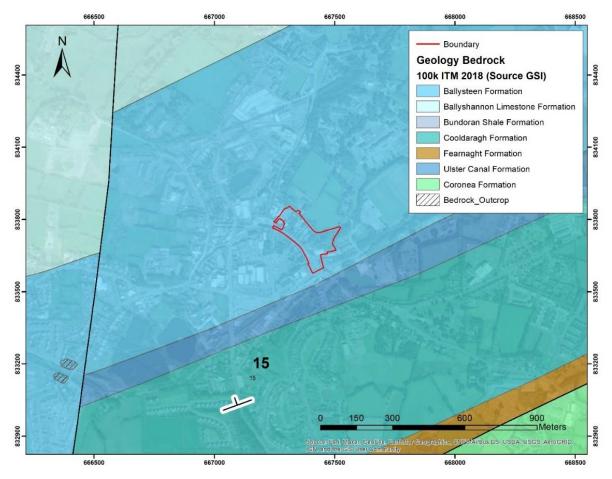


Figure 2-3: Topography


2.5 GEOLOGY

2.5.1 BEDROCK GEOLOGY

The bedrock geology underlying the site is mapped on the GSI 1:100,000 bedrock formations map. This data shows that there are three different formations underlying and adjacent to the proposed site:

- Ballysteen Formation (Limestone) Dark muddy limestone, shale. Irregularly bedded and nodular bedded argillaceous bioclastic limestones (wackestones and packstones), interbedded with fossiliferous calcareous shales. It represents a widespread development throughout Westmeath and Longford.
- Ulster Canal Formation (Sandstone) It is composed of a marine sandstone unit and 'shaly pales and pale beds', that is silty and sandy limestones that are variably fossiliferous with occasional parallel and cross-laminations and some fine-grained limestones.
- Cooldaragh Formation (Mudstone) It consists of pale brown-grey siltstones and mudstones, algal, evaporitic and argillaceous micrites and muddy siltstones.

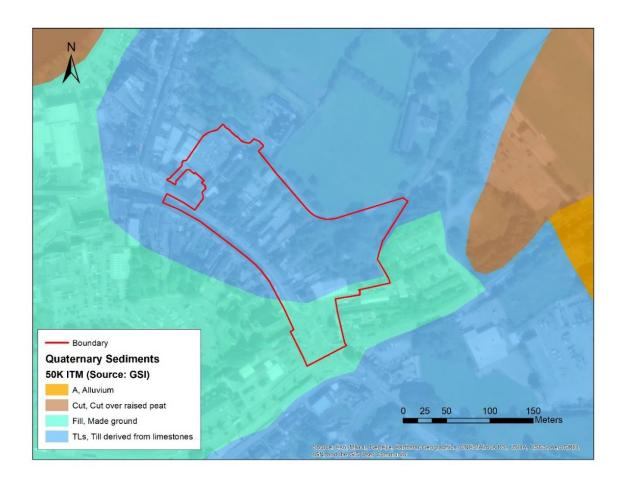

The bedrock geology map (GSI, 2024) is shown in Figure 2-4. From the mapped information, the site is entirely within the Ballysteen Formation (Limestone).

Figure 2-4: Bedrock Geology (GSI, 2024)

2.5.2 QUATERNARY SEDIMENTS

According to the 'Quaternary Geology of Ireland – Sediments Map, scale 1:50,000 (GSI, 2024), the site consists of Glacial Till deposits derived from limestones (TLs) and the Made Ground (fill), as shown in Figure 2-5. In the areas immediately around the edges of the site, alluvium and peat are also mapped, as can be seen on the map. It is important to note that the GSI mapping only considers the first layer of greater than 1m thickness and is mapped at a scale which may not resolve small-scale local features.

Figure 2-5: Quaternary Geology (GSI, 2024)

2.5.3 SOILS

The soil mapped by the Teagasc dataset presented in the Teagasc website [24] for the site area is shown in Figure 2-6. The map shows that within the boundaries of the site, two soil classes are present. One is the Made Ground which covers most of the site. The other soil present, of natural origin, is Till derived from mixed Devonian and Carbonifereous rocks, category - Mineral poorly drained (Mainly acidic).

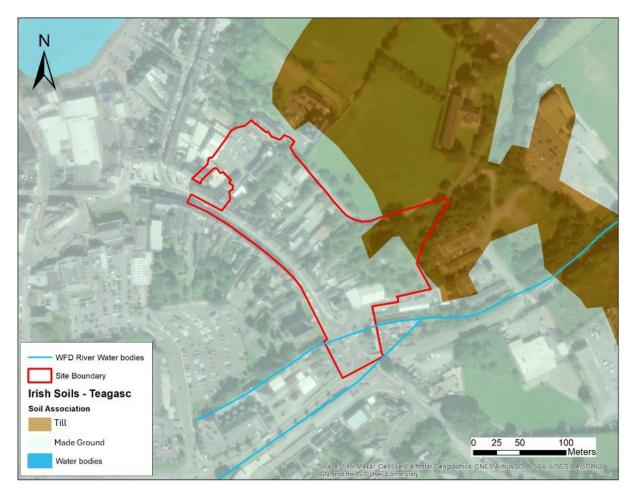
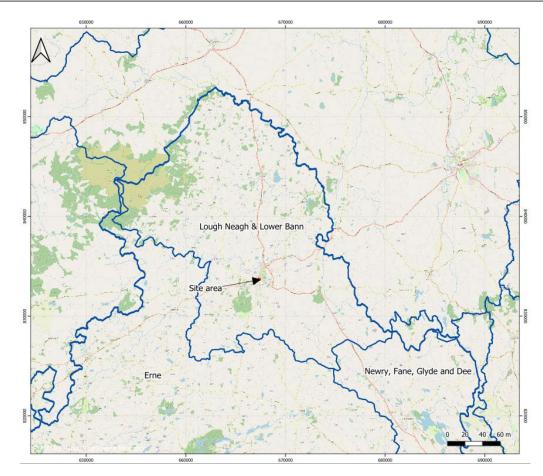
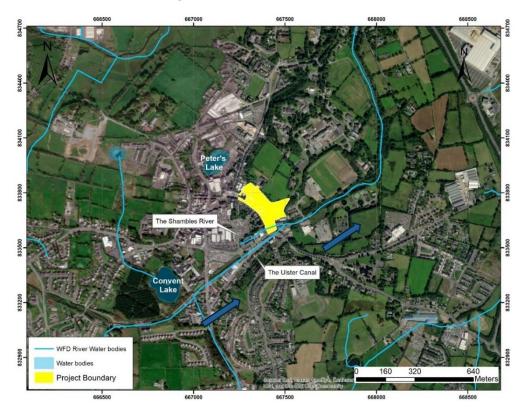



Figure 2-6: Irish soils at the Site (Teagasc, 2024)


2.6 HYDROLOGY

The site is part of the larger Lough Neagh-Lower Bann catchment (Figure 2-7). Locally, the Ulster Canal runs south of the project area and the River Shambles cuts through the site. Ulster Canal and the Shambles River separate just upstream of the site and the Ulster Canal, diverting south of the River Shambles, has been culverted under several areas through the town (Canal Street), including the square. The river flows locally in a north-easterly direction, Figure 2-8. Two bodies of water are also in the vicinity of Dublin Street North Regeneration Project: Patena Lake (or Peter's Lake), 175 m to the northwest and Convent Lake, 550 m to the west.

Figure 2-7: Blackwater Catchment

Figure 2-8: Site hydrography

Monaghan Dublin Street –Interpretative Ground Investigation Report GDG | Monaghan Dublin Street | 23165-GIR-001-00

Concerning surface water quality, the information from the EPA (2023) is shown in Table 2-2: River water quality.

Parameter	Status
River Waterbodies Risk for Shambles locally	at Risk
River Waterbody WFD Status 2016-2021	Poor

Table 2-2: River water quality

In the vicinity of the site boundary (marked with a red 'x') there is flood risk – medium probability on the banks of the Shambles River, as can be seen on the map in Figure 2-9. This layer shows the modelled extent of land that might be flooded by rivers in a severe flood event. Medium Probability flood events have approximately a 1-in-a-100 chance of occurring or being exceeded in any given year. This is also referred to as an Annual Exceedance Probability (AEP) of 1%.

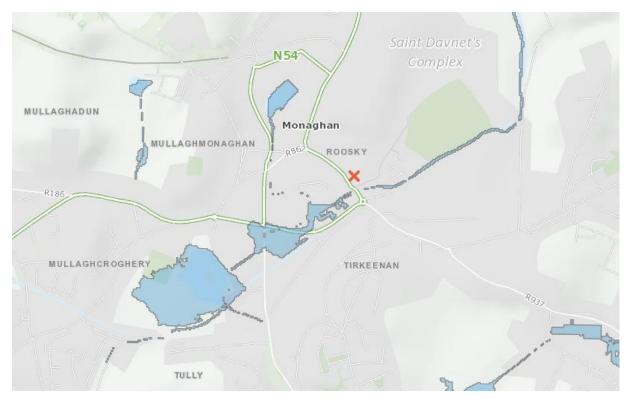


Figure 2-9 Flood Risk (EPA, 2024)

The Historic Flood Maps produced by GSI in collaboration with Trinity College Dublin and the Institute of Technology Carlow (Figure 2-10) don't show any flood areas within 750 m of the site.

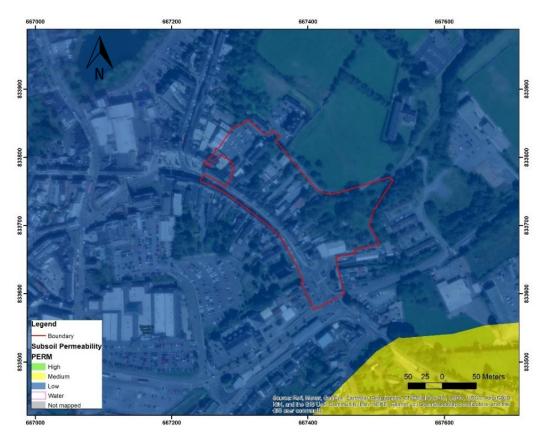
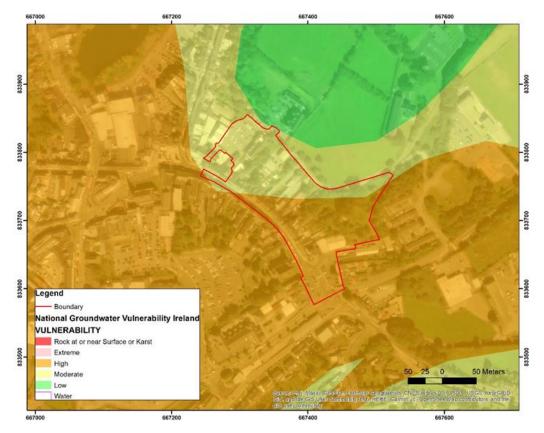


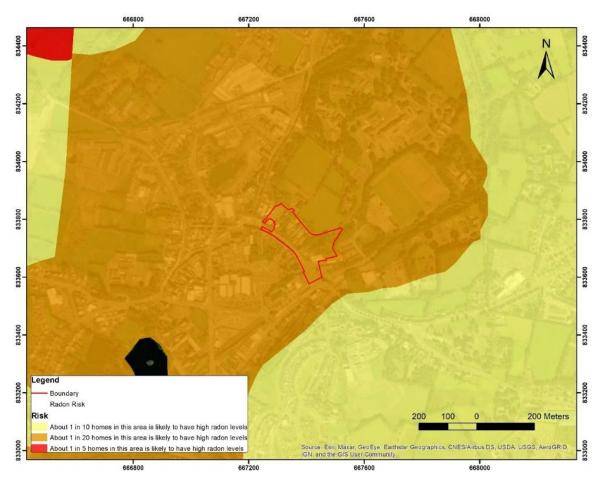
Figure 2-10: Historic Flood Maps produced (GSI, 2024)


2.7 HYDROGEOLOGY

According to information provided by GSI Groundwater Resources (Aquifer), the groundwater Rock Unit beneath the site is the Dinantian Lower Impure Limestone, and the aquifer is defined as Regionally Important Aquifer-Fissured bedrock (Rf). The Subsoil Permeability is considered Low for the site and surrounding Figure 2-11. However, in terms of groundwater vulnerability, the site is in the High and Moderate classes as shown in Figure 2-12.

Monaghan Dublin Street –Interpretative Ground Investigation Report GDG | Monaghan Dublin Street | 23165-GIR-001-00

2.8 MINING


According to Geological Survey Ireland Spatial Resources records, there is currently no mining activity in the vicinity of the site. The nearest Mineral Locality is to the south of the area approximately 4 km away, identified as Gabbro Mining.

2.9 INDUSTRIAL LAND USE

With the records available at the Environmental Protection Agency map viewer, there are no potentially contaminated industrial sites within 250m of the site boundary. However, there is potential that the infilled quarry (at the SE limit of the site) and the description/ type of infill is unknown.

2.10 RADON

Radon Risk Map by the EPA is shown in Figure 2-13. This map shows a prediction of the number of houses in any one area that are likely to have high radon levels. Those areas in red are most at risk from radon and are called High Radon Areas. The map is based on an analysis of indoor radon measurements plus geological information including, bedrock type, quaternary geology, soil permeability and aquifer type. The areas of the map in orange and yellow are areas of medium and low risk respectively. The map shows that the site is located in a region of medium risk.

3 GROUND INVESTIGATION

3.1 HISTORIC GI

Two factual reports detailing the ground investigation regimes completed historically in the surrounding area were provided by the McAdam Design. The historical GI included:

- Report on Site Investigation, Active Travel Project for CORA on behalf Monaghan County Council
 Report No. 24665, July 2023 (IGSL -Site 1) Completed by IGSL [12] and included:
 - 8 no. cable percussion boreholes
 - Three rotary cores holes,
 - 14 no. trial pits,
 - One standpipe installation,
 - Geotechnical Soil and Rock Laboratory Tests,
 - Chemical and Environmental Laboratory Tests.
- Report on Site Investigation, Active Travel Project for DBFL on behalf Monaghan County Council -Report No. 24665/1, July 2023 (IGSL-Site 2) – Completed by IGSL [11] and included:
 - Two no. cable percussion boreholes
 - Two no. rotary cores holes,
 - 9 no. trial pits,
 - Two standpipe installations,
 - 9 no. CBR by Plate Test,
 - Four BRE Digest 365 Infiltration tests,
 - Three slit trenches,
 - Three vane shear tests,
 - Geotechnical Soil and Rock Laboratory Tests,
 - Chemical and Environmental Laboratory Tests.

A layout plan showing the approximate location of each historical and 2024 GI is illustrated in Figure 3-1. The stratigraphy encountered by the historical GI is summarised in the following paragraphs along the 2024 GI. These historical GIs typically confirm the ground conditions encountered by the information described in the GI conducted by Causeway Geotech (Causeway, 2024).



Figure 3-1: 2024 GI and Historic Site Investigation Layout Plan

3.2 GROUND INVESTIGATION (SEPTEMBER 2024)

The GI for the main contract of the Dublin Street Monaghan project was specified by GDG and was undertaken by Causeway in 2024 [1] in accordance with I.S. EN 1997-2:2007 and associated standards. Full details of the results of the field and laboratory are detailed in the Causeway (2024) factual GI report. The GI works comprised:

- Three cable percussion boreholes,
- Ten trial pits,
- Two archaeological trenches,
- One infiltration/soakaway test,
- Four indirect CBR tests,
- Standard Penetration Tests,
- Three Plate Load tests,
- Geotechnical Laboratory Testing:
 - 10 no. Atterberg Limits,
 - 10 no. Particle Size Distribution test,

• Environmental laboratory testing of soil & water.

The plan of the Causeway (2024) ground investigation showing the locations of exploratory holes is presented in Figure 3-2.

Figure 3-2: Ground investigation plan (Causeway Geotech, 2024)

3.3 GEOENVIRONMENTAL LABORATORY TESTING

The geoenvironmental testing carried out is presented in Table 3-1.

Table 3-1: Summary of the geoenvironmental testing

Number of tests	Description	Notes
	S	OIL
22	Metals	(Sb, As, Ba, Be, B, Cd, Cr(III), Cr(VI), Cu, Pb, Hg, Ni, Se, V, Zn)
22	PAH (USEPA 16)	
22	TPH CWG C5-C44	
22	Asbestos presence screen	Identification was undertaken if/where asbestos fibres were detected.
22	Moisture Content	
22	Cyanide (Total & Free)	
22	Sulphate, Sulphide	
22	Phenol – Monohydric	

Number of tests	Description	Notes
22	pH & Acid neutralisation capacity (pH4) & Alkali Reserve	
22	Chloride, Nitrate	
22	Soil organic Matter	
22	Thiocyanate	
22	VOCs	Benzene, Toluene, Ethylbenzene, o-xylene, MTBE
	LEACHATE (simulated leachate	es derived from soil samples)
10	10:1 eluate preparation	
10	Leachable Metals	(As, B, Ca, Cd, Cr(III), Cr(VI), Cu, Pb, Hg, Ni, Se, V, Zn)
10	Leachable PAH (USEPA 16)	
10	Leachable TPH CWG C5-C44	
10	Leachable Phenol Monohydric Low Level	
10	Leachable Cyanide (Total & Free)	
10	Leachable ammoniacal nitrogen	
10	pH & electrical conductivity (leachate)	
10	Dissolved Organic Carbon	
10	Other Inorganics	Sulphur, Sulphide, Sulphate, Thiocyanate
10	VOCs	Benzene, Toluene, Ethylbenzene, p&m- xylene, o-xylene, MTBE
	SURFACE	WATER
8	Leachable Metals	(As, B, Ca, Cd, Cr(III), Cr(VI), Cu, Pb, Hg, Ni, Se, V, Zn)
8	Leachable PAH (USEPA 16)	
8	Leachable TPH CWG C5-C44	
8	Leachable Phenol Monohydric Low Level	
8	Leachable Cyanide (Total & Free)	
8	Leachable ammoniacal nitrogen	
8	pH & electrical conductivity (leachate)	
8	Dissolved Organic Carbon	
8	Other Inorganics	Sulphur, Sulphide, Sulphate, Thiocyanate
8	VOCs	Benzene, Toluene, Ethylbenzene, p&m- xylene, o-xylene, MTBE

3.4 CONTAMINATION INVESTIGATION

3.4.1 CONTAMINATION OBSERVATIONS

No visual or olfactory evidence of contamination was encountered on Site and no visual evidence of potential asbestos-containing materials were recorded.

3.4.2 CHEMICAL ANALYSIS

Soil samples were selected for soil chemical analysis to assess potential contamination risks to human health, infrastructure, and the water environment. Testing comprised a suite of contaminants established from the desk-based assessment to potentially present within the Site. Surface water samples were also selected to assess potential contamination risks and to gauge any effect the site may have on the water environment.

The analysis suite and chemical analysis results are given in Appendix A.

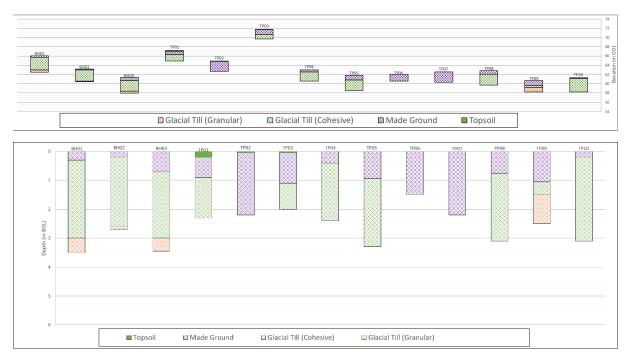
3.4.3 GAS MONITORING

In the absence of a significant source of ground gas identified during the desk study or the intrusive investigation, and considering the absence of sensitive human receptors, gas and groundwater monitoring were not undertaken.

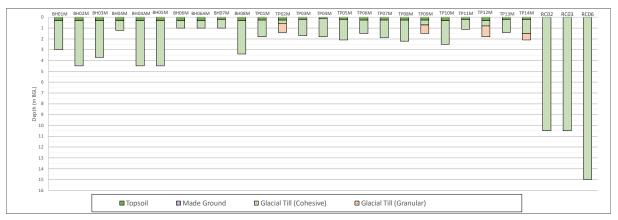
4 GROUND MODEL

4.1 STRATIGRAPHIC MODEL

The ground conditions are generally consistent across the Site based in both 2024 GI and historical GI results. The strata encountered by the GI included Topsoil overlying Made Ground overlying Glacial Till overlying Limestone. Limestone was encountered in two historic rotary cores RC01 and RC02R. A typical description of the soil materials encountered beneath the entire Site based on the 2024 GI is presented in Table 4-1, and the geotechnical cross-section of the exploratory holes is shown in Figure 4-1.


Moreover, Figure 4-2 and Figure 4-3 present cross sections based on the exploratory holes from IGSL-Site 1 and IGSL-Site 2. Due to the lack of ground-level information in some of the exploratory holes, the cross sections are presented as meters below ground level. These cross-sections demonstrate consistency in stratigraphy across 2024 GI and historic results. Consequently, the insitu and laboratory tests from historic ground investigations were analysed alongside the 2024 GI campaign to establish accurate characteristic geotechnical parameters.

Soils	Description	Thickne	• •	Dept to top
		Max.	Min.	(mBGL)
Topsoil	-	0.20	0.05	0.00
Made Ground	Reworked soft to very stiff CLAY and GRAVEL with fragments of red brick, ceramics, roots and plastic. Gravel is subangular to coarse/ Angular fine to coarse GRAVEL of various lithologies.	2.40	0.20	0.00-0.20
Cohesive Glacial Till	Soft to very stiff dark brown slightly sandy slightly gravelly CLAY/SILT with low to medium cobble content. Sand is fine to coarse. Gravel is angular to coarse of sandstone and limestone. Cobbles are subangular.	15.00	0.20	0.20-1.10
Granular Glacial Till	Angular coarse GRAVEL and COBBLES with clay.	Unpro ven	0.10	2.60-3.00
Limestone	Strong to very strong, thickly to thinly bedded, light blue/grey fine-grained LIMESTONE, fresh to slightly weathered.	Unpro ven	3	7.50*


Table 4-1: Description of the soil material encountered across the Site

*RC01R, RC02R Historic GI - IGSL Site 2

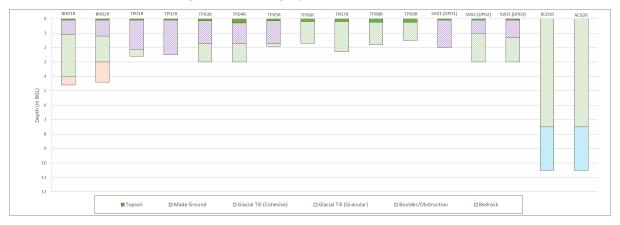


Figure 4-1: Stratigraphic model – 2024 GI with elevation (top) and depth (bottom)

Figure 4-2: Stratigraphic model – IGSL Site 1

4.2 **GROUND WATER CONDITIONS**

During the Causeway site investigation, water strikes were observed in test pit TP10 at a depth of 2.70m, while test pit TP09 showed signs of moisture below 2.20m. The remaining exploratory holes did not yield any notable groundwater strikes during the drilling or excavation processes. It is important to note that the casing used to support borehole walls during drilling could potentially have sealed off any water-bearing layers. Therefore, the possibility of encountering groundwater during future excavation works should not be disregarded.

Groundwater conditions varied across the historic investigated sites. At IGSL - Site 1, water seepage was observed in only one trial pit, TP06, at a depth of 1.0m BGL. In contrast, IGSL - Site 2 exhibited more frequent water occurrences, with water recorded in multiple trial pits: TP01R, TP06R, TP08R, and TP09R. The water strikes at IGSL - Site 2 ranged from 0.5m BGL in TP09R to 2.1m BGL in TP01R.

Furthermore, two standpipes were installed in rotary core boreholes (RC01R and RC02R) at IGSL -Site 2 to facilitate groundwater monitoring. Standpipe water level measured 5 minutes after the completion of drilling operations was recorded at 6.55 m BGL and 4.85m BGL at RC01R and RC02R boreholes, respectively.

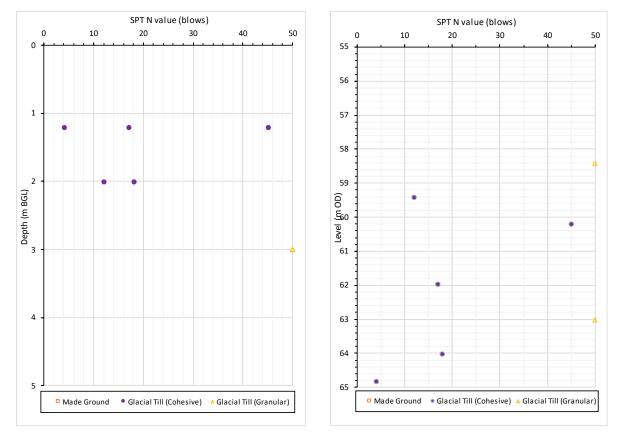
It should be noted that continuous groundwater monitoring has not been conducted at either site and groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. Therefore, a conservative groundwater level is recommended for design to mitigate against possible increases in porewater pressures or reductions in design resistances. As a minimum, the design groundwater levels should coincide with the upperbound groundwater profile recorded near the proposed design element. For design purposes, a conservative groundwater level may be assumed to be at existing ground level, i.e. 0m BGL.

5 IN-SITU TESTS

5.1 STANDARD PENETRATION TESTING

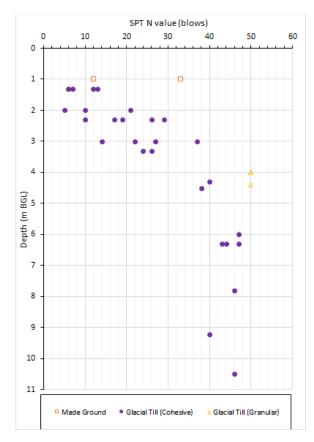
Eight in-situ Standard Penetration Tests (SPT) were carried out within the boreholes completed by Causeway and 62 no completed by IGLS in two site investigation campaigns. The plots of the Causeway, IGSL- Site1&2 and combined data of uncorrected SPT-N values are presented in Figure 5-1 to Figure 5-3.

The summary of the statistics for uncorrected SPT N values recorded for soil strata is presented in Table 5-1. The SPT N value for the:

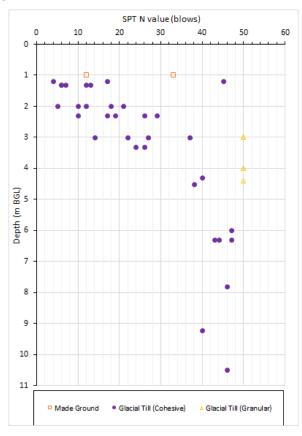

- Made Ground was encountered only in IGSL Site 2 campaign. Made Ground across the Site varies from 2 blows to 50 blows for a 300mm penetration, where the value 50 is refusal. The SPT value of 50 was encountered in BH01R, suggesting that gravels (brick and flint) content is likely present within the stratum. Hence, the value of 50 is not considered to be representative of the stratum. The range of SPT-N values within the Made ground strata suggests the material is typically dense to medium dense.
- Glacial Till (Cohesive) layer across the Site is similar in all three datasets and varies from 4 blows to 48 blows for a 300mm penetration with an average of 19 in Causeway and 25, approximately, in IGSL- Site 1&2. Lower values were recorded at a shallow depth of 1.2m BGL suggesting the top of Glacial Till (Cohesive) is softer and increases with the depth. The range of SPT-N values within the layer suggests the material is stiff to very stiff.
- The SPT-N value for the Glacial Till (Granular) encountered in Causeway and IGSL Site 2 dataset was refusals.
- The combined dataset shows agreement in Glacial Till (Cohesive) SPT N results. IGSL Site1&2 follow the trend from 2024 Gi which proves that the stratum across the GI's is the same (Figure 5-3).

Stratum	Ground model	Count	Min	Average	Max	No. of refusals
Made Ground	Causeway (2024)	-	-	-	-	-
	IGSL- Site 1	-	-	-	-	-
	IGSL -Site 2	2	12	22	33	1
Glacial Till (Cohesive)	Causeway (2024)	6	4	19	45	1
	IGSL- Site 1	47	6	26	47	27
	IGSL -Site 2	10	5	25	47	2

Table 5-1: Summary of SPT results



Stratum	Ground model	Count	Min	Average	Max	No. of refusals
Glacial Till (Granular)	Causeway (2024)	2	50	50	50	2
	IGSL- Site 1	-	-	-	-	-
	IGSL -Site 2	3	50	50	50	3



5.2 PLATE LOAD TESTS

Plate load tests (PLT) were performed at three locations across the Site using 450mm diameter plates at depths ranging from 0.5m BGL to 0.6m BGL with five equal loadings to a maximum pressure of approximately 280kPa followed by unloading in TP08, two loadings to a maximum of 86kPa followed by unloading in TP10 and four loading to a maximum of 203kPa followed by unloading in TP10A. The tests were performed to evaluate the subgrade reaction (K) modulus of the underlying strata and the equivalent California Bearing Ratio (CBR) value.

The results from plate load tests conducted across the Site are presented in Table 5-2. Subgrade reaction modulus (K) value is 29mPa/m for Made Ground and for Glacial Till (Cohesive) ranging between 12MPa/m and 13MPa/m.

Test ID	Ground elevation (mOD)	Test depth (m)	Underlying soil	Modulus of subgrade reaction (MPa/m)	Equivalent CBR
TP08	62.81	0.6	Made Ground – Firm slightly sandy gravelly CLAY with fragments of brick and tile	29.2	1.5%
TP10	61.31	0.5	Glacial Till (Cohesive)- Firm dark grey slightly sandy slightly gravelly CLAY with a few rootlets and high organic odour	12.1	0.3%
TP10A	61.31	0.6	Glacial Till (Cohesive)-Slightly sandy slightly gravelly CLAY	13.4	0.4%

Table 5-2: Plate bearing test results

5.2.1 SOAKAWAY TESTS

One infiltration test was performed following BRE Digest 365 'Soakaway Design' in the Causeway SI, and fours tests in the IGSL – Site 1. The dataset from IGSL- Site 2 was omitted due to its considerable distance from the site, making it less relevant for our analysis. The infiltration rates obtained from soakaway tests across the Site are presented in Table 5-3. These results suggest that the shallow subsurface material is of low permeability.

	Site		Pit c	limensions	; (m)	Infiltration rate	
Test ID	Investigation	elevation (mOD)	Depth	Width	Length	(m/min)	(m/sec)
TP10	Causeway (2024)	61.3	1.5	0.7	1.6	Infiltration rate (q) is very low	
SA01	ISGL – Site 1	71.9	1.3	0.5	2.0	0.00173	2.89E-05
SA02	ISGL – Site 1	75.6	1.6	0.5	2.0	0.00023	3.83E-06
SA03	ISGL – Site 1	83.6	1.6	0.5	2.0	5.3E-05	8.85E-07
SA04	ISGL – Site 1	79.5	1.3	0.5	1.5	0	0
SA01R	IGSL – Site 2	55.7	1.7	0.5	1.7	0	0
SA02R	IGSL – Site 2	56.0	1.3	0.7	1.5	4E-05	6.67E-07
SA03R	IGSL – Site 2	57.1	1.7	0.5	1.5	0	0
SA04R	IGSL – Site 2	57.0	1.5	0.7	1.6	0.00102	1.69E-05

Table 5-3: Soakaway test results

5.3 DYNAMIC PROBE RECORDS

As part of the IGSL-Site 2 campaign, three heavy dynamic probes (DPH) were conducted to a maximum depth of 3.8 meters using 50kg hammer with a fall height of 500mm and penetration increments of 100mm. The number of blows required to penetrate 100 mm (N_d) was recorded along the full depth of penetration by the DP. Ten dynamic probes were advanced using a window sampling at same as DPs, to provide supplementary coverage of the site between borehole locations. The N_d values for the Made Ground were recommended to be interpreted between 0 and 18 blows per 100mm penetration which is soft to very stiff material. For Glacial Till (Cohesive) N_d values ranging between 9 to 27 which corresponds to firm to very stiff material ([10],[22]). The results of the dynamic probes are presented in Figure 5-4.

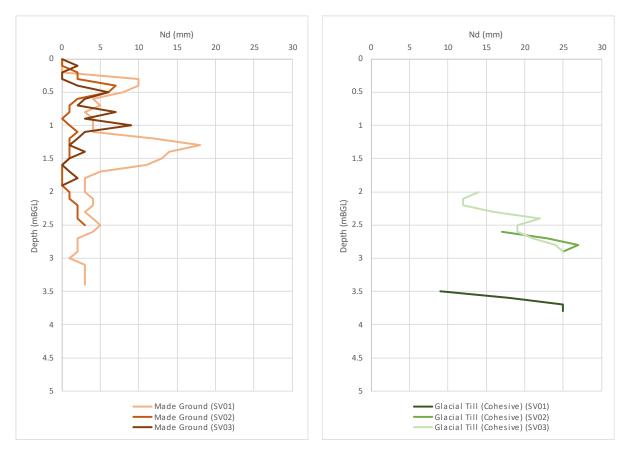


Figure 5-4: Dynamic Probes results for Made Ground (left) and Glacial Till (right) - IGSL Site 2

6 LABORATORY TESTS

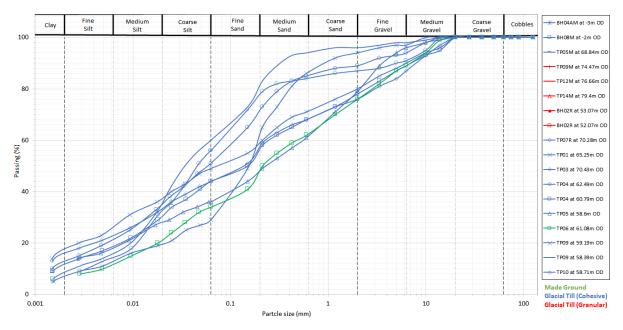
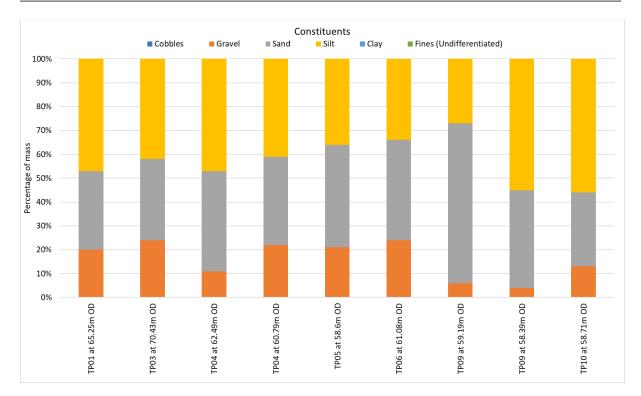
6.1 CLASSIFICATION TESTS

6.1.1 PARTICLE SIZE DISTRIBUTION

Particle size distribution (PSD) classification testing was completed by Causeway on 9 no. soil samples recovered from the Made Ground and Glacial Till (Cohesive). Additional 9no. of tests were analysed from the IGSL- Site 1&2. The PSD plots for each of strata and combined datasets are presented in Figure 6-1, Figure 6-3, and Figure 6-5. In addition, the percentage of soil constituents obtained from the PSD results are illustrated in Figure 6-2, Figure 6-4, and Figure 6-6.

From the 2024 GI PSD results, the Made Ground stratum was determined to consist primarily of sand-sized particles, with silt being secondary and more than 20% percentages of gravel. Made ground is characterised as composite /mixed soil consists of 34% of fines with almost equal value of sand (42%) and gravel (24%) described as very silty SAND according to BS5930:2015. It is generally recognised that the properties of a composite soil containing a wide range of particle sizes are dictated by the finer particles, the coarser particles often simply acting as a filler in a finer matrix. Fine content is close to the boundary (i.e. 35%) between fine and coarse soil according to the British Soil Classification System (BSCS) [25] . Thus, for design purposes, Made Ground stratum is considered as cohesive soil.

Glacial Till (Cohesive) consist of similar content like Made Ground – primarily sand and silt content but with less than 20% value of gravel.

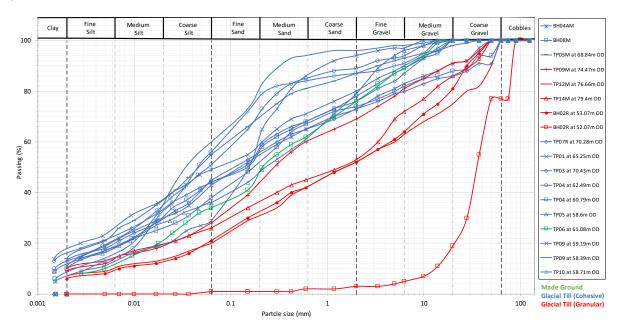

Figure 6-1:PSD results of Glacial Till (Cohesive) and Made Ground – 2024 GI

Figure 6-2: Percentage of soil constituents – 2024 GI

The PSD results from the IGSL – Site1&2 dataset, covers the characterisation of Glacial Till (Cohesive) and Glacial Till (Granular). Glacial Till (Cohesive) consists of 40% to 55% of fines with almost equal value of sand and gravel. The sample BH02R stands out as significantly different from other samples, containing an unusually high proportion of over 70% gravel and approximately 30% cobbles. This anomalous composition suggests that the logger may have encountered a localized lens of gravel or the top of the Glacial Till (Granular), or alternatively, there might have been an error in the sampling process.

Monaghan Dublin Street –Interpretative Ground Investigation Report GDG | Monaghan Dublin Street | 23165-GIR-001-00

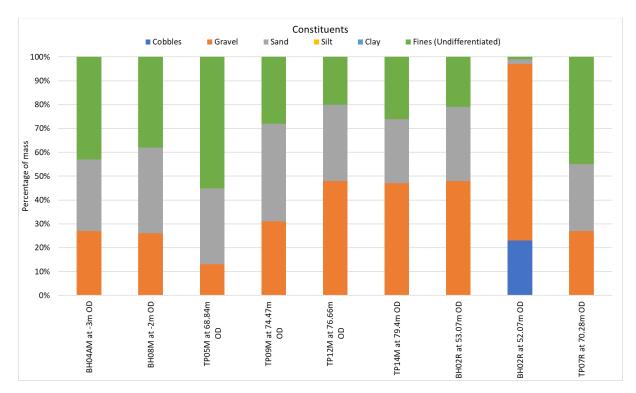


Figure 6-4: Percentage of soil constituents – IGSL – Site1&2

The recent and historic datasets show general agreement in soil composition, with the notable exception that in the IGSL results indicate a higher proportion of silt particles compared to the recent findings.

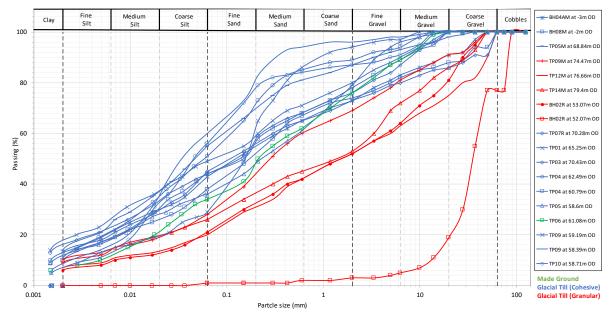


Figure 6-5: PSD results of Made Ground, Glacial Till (Cohesive), and Glacial Till (Granular) – all datasets

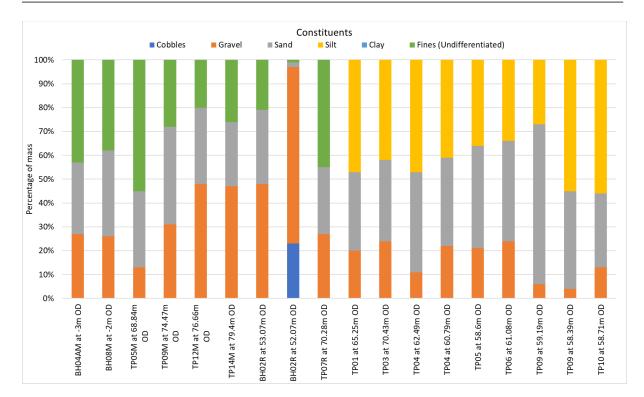


Figure 6-6: Percentage of soil constituents – all dataset

6.2 ORGANIC CONTENT

Organic content testing was completed on five samples recovered from Glacial Till (Cohesive) strata encountered across the Site during the 2024 GI. Organic material results were found in two samples and are summarised in Table 6-1 and illustrated in Figure 6-7. The results suggest that the sample from TP04 contains very low percentages of organic matter and is thus designated as inorganic (i.e. <2%) in accordance with BS 5930:2015, and sample from TP10 can be described as soil with medium organic content. The elevated percentage of organic content observed in some samples may be attributed to their proximity to the topsoil layer. Topsoil typically contains a higher concentration of organic matter due to the presence of decomposed plant and animal materials, as well as microbial activity. As sampling locations approach the surface or interface with the topsoil, it's not uncommon to encounter increased levels of organic content.

Additionally, organic tests were conducted in the historic GI. Eleven samples were checked from Made ground and Glacial Till (cohesive). Organic content in these samples ranged from 2.8% to 7.8%, with one high value of 10% encountered at 0.8m BGL within the Glacial Till (cohesive).

	Table			
BH ID	GI campaign	Depth	Description	Organic content (%)
TP04	2024 GI	0.5	Gravely sandy SILT with low cobble content.	1.2
TP10	2024 GI	0.5	Slightly sand slightly gravelly CLAY with a few rootles and high organic odour.	9.0
BH01	IGSL – Site 1	0.5	Firm brown SILT/CLAY with occasional gravel	5.0
BH03	IGSL – Site 1	0.5	Soft to firm brown sandy SILT/CLAY with occasional gravel	1.5
BH07	IGSL – Site 1	0.8	Very stiff brown sandy SILT/CLAY with some gravels and cobbles	10
TP04	IGSL – Site 1	0.5	Sandy very gravelly CLAY with high cobbles and low boulders content.	3.1
TP08	IGSL – Site 1	0.8	Firm to stiff sandy very gravelly CLAY with high cobbles and boulders content.	2.8
TP13	IGSL – Site 1	0.6	Firm to stiff sandy very gravelly CLAY with high cobbles and boulders content.	4.7
BH01R	IGSL – Site 2	0.5	Made Ground - Soft brown SILT/CLAY with occasional fine gravel	7.8
BH02R	IGSL – Site 2	1.0	Made Ground- brown gravelly Clay fill	3.5
TP01R	IGSL – Site 2	0.6	Made Cround grouphy Class	5.3
TP02R	IGSL – Site 2	2.0	Made Ground – gravelly Clay, angular stones, red bricks, roots, timber, plastic, concrete	4.0
TP05R	IGSL – Site 2	0.5	- Tools, timber, plastic, concrete	3.1

Table 6-1: Summary of organic content results

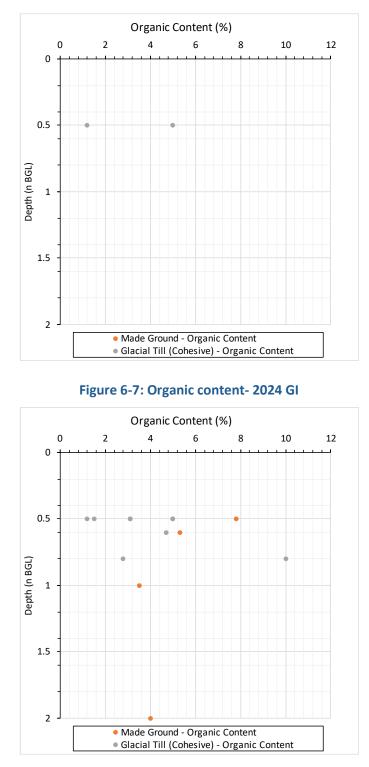


Figure 6-8: Organic content - all datasets

6.3 MOISTURE CONTENT

Causeway completed moisture content (MC) testing on 10 no. soil samples recovered from the Made Ground and Granular Till (Cohesive & Granular) overburden strata encountered across the Site. The MC values measured during the geotechnical laboratory testing are illustrated in Figure 6-9

and the results are summarised in Table 6-2. The MC of the Glacial Till (Cohesive) (6 No. samples) was measured between 15% and 42%, while in the historic GI the moisture content was raging from 12%-26%. The low MC measurement (i.e. 12%) could be due to sample recovery/storage and thus excluded from the average MC value. High MC (33%, 42%) was measured in samples encountered from TP9 and TP10 where water strikes occurred (2024 GI). Moisture content (MC) for Made Ground is consistent across GIs and raging from 16%-18%. Only one record of 13% MC was reported for Glacial Till (Granular). Figure 6-9 presents the MC values for 2024 GI and all datasets together.

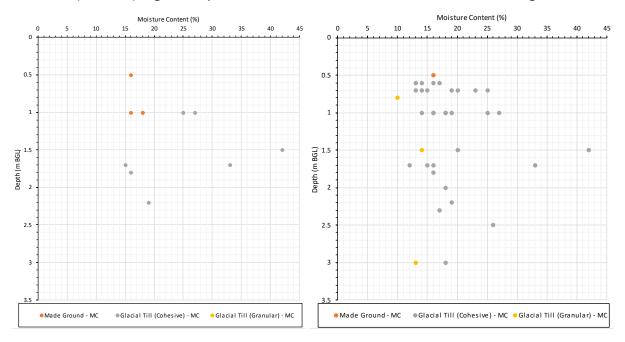


Figure 6-9: Moisture Content – 2024 GI (left) and all dataset (right)

Stratum	Moisture content (%)						
Stratum	Count	Min	Average	Max			
Made Ground	5	16	18	20			
Glacial Till (Cohesive)	27	12	19	42			
Glacial Till (Granular)	4	10	12	14			

Table 6-2: Moisture content summary

6.4 ATTERBERG LIMITS

Atterberg limit testing was carried out on 7 No. soil samples recovered from exploratory holes spread across the Site and 16 no. samples from the historic GI. The Atterberg limit testing was completed to determine the Liquid Limit (LL) and Plastic Limit (PL) values for each cohesive soil type, with MC measured on the same samples. The MC, LL and PL plot was produced for each stratum encountered in the 2024 GI and combined datasets in Figure 6-10 and Figure 6-11. A summary of the statistics for the Atterberg limits test results, including the minimum, average and maximum values, are presented in Table 6-3.

Stratum	Liquid Limit (%)		Pla	astic Lir (%)	nit	Plastic	city ind	ex (%)	Mois	ture co (%)	ntent	
	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
Made Ground	39	47	55	16	16	16	23	23	23	16	18	20
Glacial Till (Cohesive)	28	35	45	13	18	25	10	17	27	12	19	42
Glacial Till (Granular)	32	32	32	NP	NP	NP	NP	NP	NP	10	12	14

Table 6-3: Summary of Liquid limit, Plastic limit and Plasticity Index test results

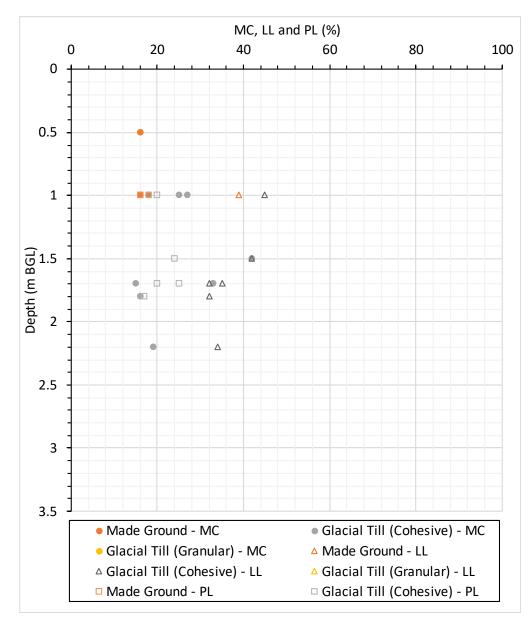


Figure 6-10: Atterberg Limits results – 2024 GI

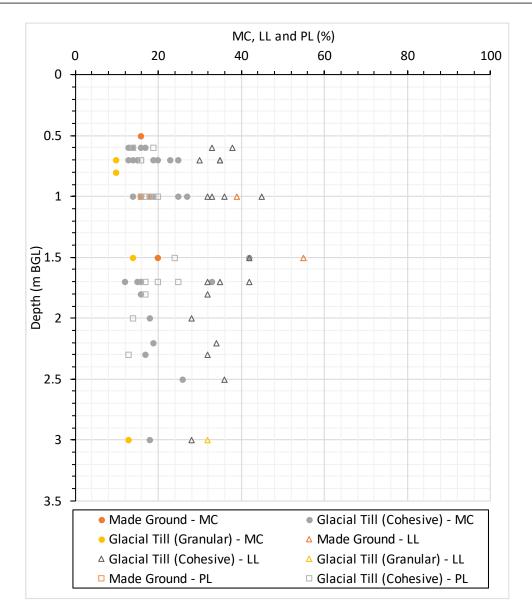
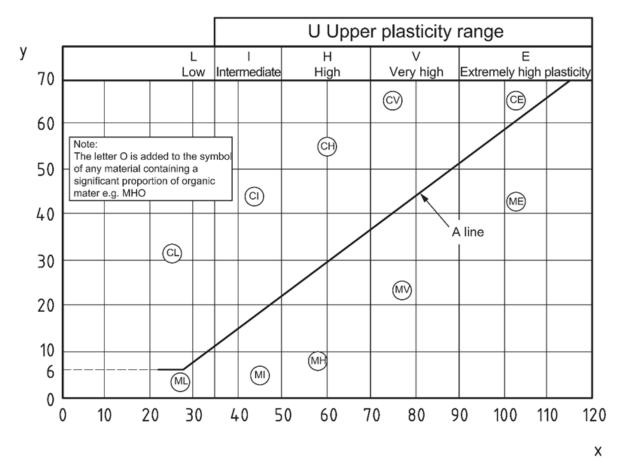



Figure 6-11: Atterberg Limits results - all data datasets

The BS 5930:2015 plasticity chart, which assesses the material behaviour by plotting the LL of each material against the Plasticity Index (Ip) of the same soil sample, is shown in Figure 6-12. The Ip of a soil sample equals the difference between the LL and PL. Each data point is then compared to the A-Line, which distinguishes between clays and silts.

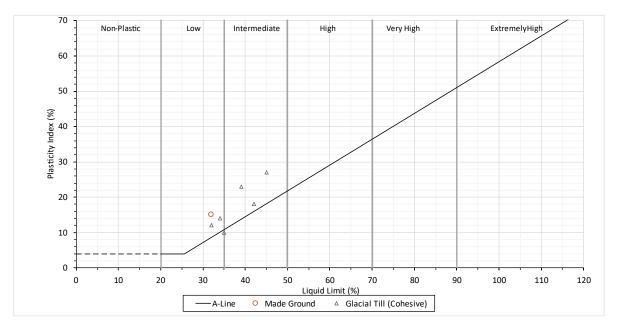


Figure 6-12: BS5930:2015 plasticity chart

For the Made Ground stratum, the moisture contents (MC) of the samples were typically closer to the PL value than the LL material. This indicates that this material is likely of medium or high strength at its natural moisture content with low compressibility. The I_p value of the Made Ground was calculated to be 15%, as shown in the plasticity charts Figure 6-13 for 2024 GI and Figure 6-14 for all datasets. The LL and I_p combinations of the Made Ground suggest the cohesive part within the material is low plasticity clay.

For the Glacial Till (Cohesive) stratum, the moisture content values were typically between the measured LL and PL values but closer to the PL than the LL. This indicates that the material is likely high strength with low compressibility, which agrees with the SPT results. The I_p values of the Glacial Till (Cohesive) were calculated to range between 10% and 27%, as shown in the plasticity charts. The LL and I_p combinations suggest the cohesive material is low to intermediate plasticity clay.

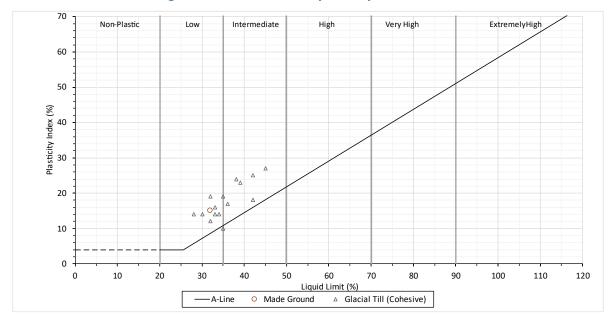


Figure 6-14: BS 5930:2015 plasticity chart -- all datasets

6.5 COMPACTION TESTING

6.5.1 OPTIMUM MOISTURE CONTENT VERSUS MAXIMUM DRY DENSITY

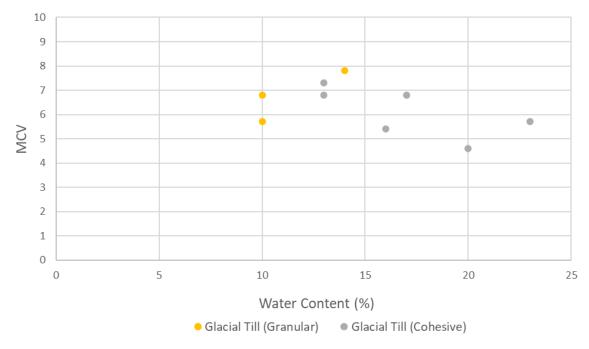
10 no. Dry Denisty/Moisture Content Relationship test have been carried out by IGSL. The test results show the correlation between the water content in a soil sample and its corresponding dry density after compaction. The summary of results is presented Table 6-4.

Location ID	Depth (m)	GI	Stratum description	Optimum Moisture Content (%)	Maximum Dry Density (Mg/m³)
TP01	0.7	IGSL-Site 1	Glacial Till (Cohesive)	11.0	1.90
TP03	0.7	IGSL-Site 1	Glacial Till (Cohesive)	12.0	1.86
TP05	0.7	IGSL-Site 1	Glacial Till (Cohesive)	12.0	1.86
TP09	0.7	IGSL-Site 1	Glacial Till (Granular)	12.0	1.88
TP12	0.8	IGSL-Site 1	Glacial Till (Granular)	12.0	1.89
TP14	1.5	IGSL-Site 1	Glacial Till (Granular)	14.0	1.85
TP04R	1.7	IGSL- Site2	Glacial Till (Cohesive)	8.1	2.01
TP06R	0.7	IGSL- Site2	Glacial Till (Cohesive)	11.0	1.89
TP08R	0.7	IGSL- Site2	Glacial Till (Cohesive)	11.0	1.80
TP09R	0.6	IGSL- Site2	Glacial Till (Cohesive)	11	1.84

Table 6-4: OMC vs. maximum dry density results

6.5.2 MOISTURE CONDITION VALUE

A series of determination of Moisture Condition Value (MCV) and Natural Moisture Content tests (MC) were conducted during the IGSL-Site 1&2 campaign. These two parameters are inversely proportional, with an increase in moisture content resulting in a reduction in the MCV.


Particularly, the natural moisture content for Glacial Till (Cohesive) ranges between 13% and 23% with an average of 15%, while the MCV ranges between 4.6 and 7.3 with an average of 6.3. The MCV value for Glacial Till (Granular) is between 6.8 and 7.8, with MC of 10 to 14 and an average of 11. The summary of results is presented in Table 6-6 and Figure 6-15.

Location ID	Depth (m)	GI	Stratum description	Moisture Content (%)	MCV
TP03	0.6	IGSL-Site 1	Glacial Till (Cohesive)	13	7.3
TP05	0.7	IGSL- Site 1	Glacial Till (Cohesive)	13	6.8
TP09	0.7	IGSL- Site 1	Glacial Till (Granular)	13	6.8
TP12	0.8	IGSL- Site1	Glacial Till (Granular)	10	5.7
TP14	1.5	IGSL- Site1	Glacial Till (Granular)	14	7.8

Table 6-5: Moisture Condition Value summary

Location ID	Depth (m)	GI	Stratum description	Moisture Content (%)	MCV
TP04R	1.7	IGSL - Site 2	Glacial Till (Cohesive)	16	5.4
TP06R	0.7	IGSL - Site 2	Glacial Till (Cohesive)	20	4.6
TP08R	0.7	IGSL - Site 2	Glacial Till (Cohesive)	23	5.7
TP09R	0.6	IGSL – Site3	Glacial Till (Cohesive)	17	6.8

6.5.3 CALIFORNIA BEARING RATIO (CBR)

The California bearing ratio (CBRs) of four locations were measured using a Dynamic Cone Penetrometer (DCP) during 2024 GI. All samples were recovered from Made Ground layer. The results of the CBR test are summarised in Table 6-6. Moreover, CBR values were determined in 10 samples taken from Glacial Till (Cohesive) in the laboratory during the historic GI. A summary of the results is presented in Table 6-7.

Borehole no.	Description	Top depth (m BGL)	Base depth (m BGL)	Min	Average	Max
TP02		0.20	1.18	9.30	26.86	66.00
BH03	Made	0.50	1.45	25.0	67.75	>100
TP04	Ground	0.20	1.17	1.50	28.30	>100
TP07		0.25	1.23	9.30	55.82	>100

Table 6-6: CBR results summary from DCP – 2024 GI

				Test Results				
Borehole no.	Description	Depth	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	conte	sture nt (%)	CBR	. (%)
					Тор	Base	Тор	Base
TP01*	Glacial Till (Cohesive)	0.70	2.01	1.76	14	14	5.7	5.6
TP03*	Glacial Till (Cohesive)	0.60	2.03	1.82	12	11	4.5	4.8
TP05*	Glacial Till (Cohesive)	0.70	2.06	1.83	14	13	3.7	4.5
TP09*	Glacial Till (Cohesive)	0.70	2.11	1.85	14	14	1.8	2.1
TP12*	Glacial Till (Cohesive)	0.80	2.15	1.95	10	10	8.2	7.1
TP14*	Glacial Till (Cohesive)	1.50	2.04	1.79	14	13	2.7	3.3
TP04R**	Glacial Till (Cohesive)	1.70	2.14	1.85	16	16	1.3	1.2
TP06R**	Glacial Till (Cohesive)	0.70	2.04	1.70	20	20	0.8	1.0
TP08R**	Glacial Till (Cohesive)	0.70	1.98	1.61	23	23	1.5	1.4
TP09R**	Glacial Till (Cohesive)	0.60	2.07	1.77	17	17	2.0	1.8
		min	1.98	1.61	10	.00	0.	80
		max	2.15	1.95	23	.00	8.	20
		average	2.06	1.79	15	.25	3.	25

Table 6-6Table 6-7: CBR test results – historic GI

*IGSL -Site 1

**IGSL-Site 2

6.6 LABORATORY HAND VANE TEST

Shear vane tests were scheduled at three locations during IGSL-Site2 campaign. A GEONOR H-10 Vane was employed. In all instances refusals of apparatus were recorded on dense coarse subsoil/fill.

6.7 POINT LOAD TESTS

IGSL completed 6 no. point load tests on rock samples recovered from two of the rotary core boreholes completed across the site – RC01R and RC02R. The unconfined compressive strength (UCS) was estimated using the following equation:

$$UCS = k \times Is(50)$$

where factor k = 20 and Is(50) the Point load index value for a core diameter of 50 mm.

The UCS test results are illustrated in Figure 6-16. UCS values are in the range of 60 MPa to 136 MPa, with an average of 100 MPa.

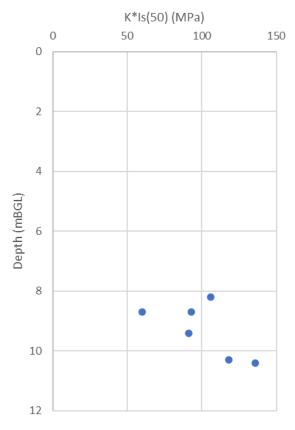


Figure 6-16: Limestone rock UCS profile

7 CHARACTERISTIC GEOTECHNICAL PARAMETERS

The characteristic geotechnical parameters are based on measured and derived values of ground properties along with relevant correlations or published values. A combination of in-situ tests such as SPT, available laboratory test results and empirical correlations from the literature were used to derive the site-wide soil parameters of each stratum encountered across the examined Site.

The characteristic values have been assessed to be cautious estimates of the value governing the limit state. The selected values may be the best estimate of the probable value (e.g. unit weight), the low estimate (e.g. strength and stiffness parameters) or the high estimate (e.g. strength parameters).

The best estimate values may be considered as characteristic values for engineering behaviour where 'average' properties are most relevant for the limit state under consideration. For independent parameters with sufficient data, the best estimate has been generally estimated as the mean of the measurements available for the specific soil layers. Some additional conservatism on either side of the unbiased 'best estimate' may be required in certain situations, such as where localised behaviour governs. Upper and lower estimate values have been derived using engineering judgment to provide a credible indication of the low and high distribution of the parameters, respectively. These parameters are not intended to represent absolute lower and upper bound lines, respectively, but somewhat indicative values that might be used for specific design purposes.

The rationale for deriving soil properties is summarised in the following sections.

7.1 SELECTION OF CHARACTERISTIC GEOTECHNICAL PARAMETERS

7.1.1 CHARACTERISTIC SPT N VALUE

The characteristic SPT N value has been assessed from the in-situ SPT measurements. The characteristic values for the SPT N values have been assessed to be closer to the low estimate as this parameter is used to derive soil strength and stiffness parameters.

The uncorrected SPT-N data was extracted from the GI data provided and has been corrected to N_{60} using the lower value of the following equations:

$$N_{60} = \frac{E_r N}{60}$$

Where:

- E_r is the energy ratio correction is 66%.
- N is the uncorrected SPT N value measured in the field.

In this case, the energy ratio is higher than 60%, therefore, the uncorrected SPT N values are more conservative and were taken as the characteristic values as presented below. The range of SPT N values from boreholes for each stratum and all datasets are summarised in Table 7-1.

The characteristic N_{SPT} value has also been assessed from the in-situ SPT and empirical correlations between heavyweight dynamic probes (DPSH) and SPT. However, conservative approach has been adopted to derive representative values. The dynamic probes data from IGSL-Site 2 were converted to equivalent SPT N values. In this study the following empirical correlation from Shahien and Farouk (2013) [22] was used:

$$N_{SPT} = 2.1 \times N_{d}(H)$$

where $N_d(H)$ is the Heavyweight dynamic probing blow count per 100mm interval.

The equivalent SPT N values were added to the plot presented in Figure 7-1. Made Ground, according to dynamic probe results, appears softer than indicated by the SPT N values. DP results encountered in Glacial Till (Cohesive) follows the increase in strength with depth as observed in the SPT N values. The discrepancies between the two datasets might be attributed to the distance of approximately 150m-200m between the 2024 ground investigation and the historic dynamic probe locations, suggesting potential variations in stratigraphy.

	Table 7-1. Summary of characteristic SPT N values								
Geological		SPT N							
unit	Count	Minimum	Maximum	Average	Characteristic				
Made Ground	2	12	33	22	12				
Glacial Till (Cohesive)	62	4	47	24	N=8 for z≤2m BGL N=Min(47, 13z-18) for z>2m BGL*				
Glacial Till (Granular)	5	50	50	50	50**				

Table 7-1: Summary of characteristic SPT N values

*z is the depth (m) from 0.0m BGL

** The presence of Glacial Till (Granular) was confirmed by Particle Size Distribution (PSD) results carried out in samples retrieved from historic holes. Based on limited SPT N data for Granular Glacial deposits, the values obtained for Glacial Till (Granular) were refusals, thus are not considered to be representative of this stratum. However, in the absence of sufficient site-specific data, the characteristic parameters for Glacial Till (Granular) were not derived as part of this GIR.

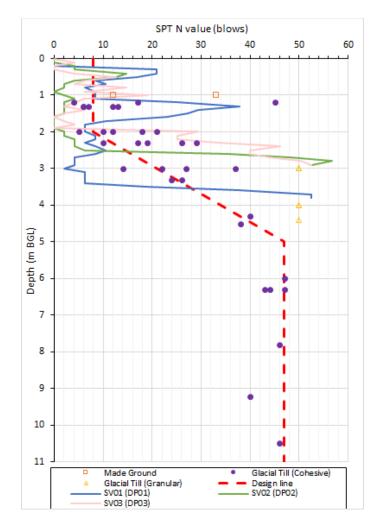


Figure 7-1:Uncorrected SPT N values with converted dynamic probes results for each soil layer with depth

7.1.2 UNIT WEIGHT

The dry and bulk densities of the soil samples subjected to the CBR test (10 no. samples) from historic GI were measured. Multiplying the measured density values by the acceleration due to gravity, taken as 9.81m/s², the unit weights were calculated as detailed in Table 7-2.

Table 7-2: Unit weight results from	laboratory measurements
-------------------------------------	-------------------------

Stratum	Unit we	eight (kN/m³)*
Stratum	Dry	Bulk
Glacial Till (Cohesive)	16.0-19.5(18.0)*	19.5-21.5(20.0)

^{*} Values in () indicate the average value

The measured unit weights of the soils were reviewed against the empirical data presented in Figure 1 and Figure 2 of BS 8004:2015 (reproduced in Figure 7-2) to assess the reliability of the measured unit weights. The interpreted γ_{dry} and γ_{bulk} ranges based on the borehole descriptions for each of the strata encountered across the Site are presented in Table 7-3. It is noted that laboratory unit weight

measurements were unavailable for Made Ground and Glacial Till (Granular) and thus the correlations from BS 8004:2015 were used to estimate the characteristic unit weight.

			ht (kN/m ^ª	n³)	
Stratum	Tomical las description of descriptions the		Dry		ılk
Stratum	Typical log description of density/strength	Lower	Upper	Lower	Upper
		Bound	Bound	Bound	Bound
Made Ground	Firm slightly sandy, slightly gravelly CLAY with fragments of bricks, ceramics, plastic and roots.	17	21	17	21
Glacial Till (Cohesive)	Soft to very stiff gravely sandy CLAY/SILT with cobble content.	15	22	15	22
Glacial Till (Granular)	Dense coarse GRAVEL with cobbles.	18	21	20	23

Table 7-3: Unit weight estimates from	empirical data presented in BS 8004:2015
---------------------------------------	--

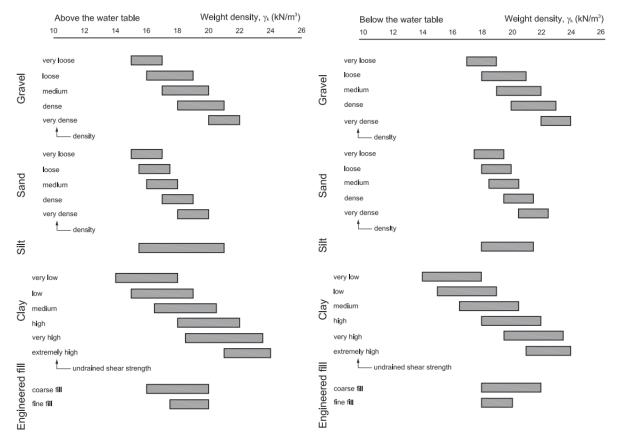


Figure 7-2: Figure 1 (left) and Figure 2 (right) of BS 8004:2015

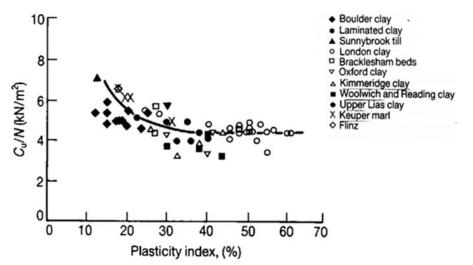
Using all of the available information, the characteristic unit weights selected as representative of the soil mass and near the best estimate value are summarised in .

Table 7-4: Characteristic unit weight values

Stratum	Dry unit weight (kN/m³)	Bulk unit weight (kN/m ³)
Made ground	18.0	20.0
Glacial Till (Cohesive)	18.0	20.0
Glacial Till (Granular)	18.0	20.0

7.1.3 UNDRAINED SHEAR STRENGTH

The undrained shear strength (c_u) of the cohesive deposits (Clay stratum) has been assessed from:


- The empirical correlation with CBR testing proposed by Black (1979), i.e. CBR=0.043 x c_u (kPa),
- The correlation with SPT N value after Stroud (1989) and

Based on the CBR values for Glacial Till (Cohesive), the c_u value ranges between 19.0 to 190.0 kPa.

SPTs were completed in the Made Ground and Glacial Till (Cohesive) layers encountered within the boreholes across the Site. For the estimation of the characteristic c_u values, the correlation with SPT N proposed by Stroud (1989) was used:

$$c_u = f_1 \times N$$

Where f_1 is a correlation factor determined using the plot produced by Stroud (1989) which has been reproduced in Table 7-3. Based on the I_p ranges - I_p is 23% for Made Ground, and between 10% and 27% with an average value of 17% for Glacial Till (Cohesive) - presented in Table 7-5, the correlation factor of f_1 was taken conservatively as 5 and 5.5, for Made Ground and Glacial Till (Cohesive), respectively. The c_u values derived using the correlation with the SPT data are presented in Table 7-5.

Stratum	Min – max SPT N (blows)	Characteristic SPT N * (blows)	Ι _Ρ (%)	f1	c _u (kPa)
Made Ground	12-33	12	23	5	60-165
Glacial Till (Cohesive)	4-46	N=4 for z≤2m BGL N=Min(44, 10z-16) for z>2m BGL*	17	5.5	22*-258.5

Table 7-5: Summary of undrained shear strength values from Stroud (1989)

*At shallow depths, max up to 1.0-1.5m

The undrained shear strength c_u based on correlation with SPT N value after Stroud (1989) and the correlation with CBR testing proposed by Black (1979) is shown in Figure 7-4. Using all of the available information, the characteristic c_u values selected as being representative of the soil mass and near the low estimate value are summarised in Table 7-6.

Table 7-6: Characteristic undrained shear strength

Stratum	c _u (kPa)*
Made Ground	60
Glacial Till (Cohesive)	44kPa for z≤2m BGL Min (258.5, 71.5z-99) for z>2m BGL*
Note:	

* z is the depth (m) from 0.0m BGL

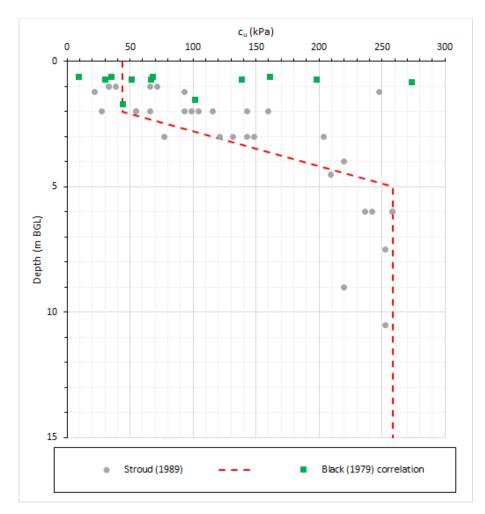


Figure 7-4: Undrained shear strength vs depth profile

7.1.4 ANGLE OF SHEARING RESISTANCE

The effective stress shear strength parameters of the overburden materials have been assessed using:

- The Santamarina and Diaz-Rodriguez (2003) correlation between Ip and φ^{\prime} for cohesive materials,
- CIRIA report C504 Engineering in Glacial Till,
- Engineering experience of Irish Glacial and Peat Materials including Farrell et al. (1989), Donohue et al. (2003), Skipper et al. (2005), Long & Menkiti (2007), Long et al (2009), Long et al. (2012) and Farrell (2016)[8].

7.1.4.1 COHESIVE / CLAY-LIKE MATERIAL

The $\phi'_{cv,k}$ for cohesive material with low percentages of coarse material can be estimated based on the expression proposed by Santamarina and Díaz-Rodriguez, 2003 (BS 8004 2015):

$$\phi'_{cv,k}$$
 = 42° - 12.5 log₁₀ l_p

Where I_p is the plasticity index (%) of the cohesive material.

It should be noted that the above formula is based on experience of UK silts and clays with very low granular content which are typically lower strength than Irish soils. Thus, the above correlation is deemed a conservative method for estimating the φ' of the cohesive materials encountered across the Site. For Made Ground one sample was recorded in regard of I_p; therefore, angle of shearing resistance of 25° was calculated. Based on characteristic I_p values presented in Table 6-3, $\varphi'_{cv,k}$ for Glacial Till (Cohesive) material is between 24.0° and 29.5° with an average value of 27.0°. BS 8004:2015 also states that the peak effective angle for cohesive material is generally 2-4° greater than the critical volume effective angle. The peak effective angle will be taken as $\varphi'_{cv,k} + 2°$, which results in φ'_{pk} value of 29° and 27° for Made Ground and Glacial Till (Cohesive), respectively.

The CIRIA report C504 describes the relationship between ϕ' and Plasticity index for CL and CI clays in drained triaxial shear. A correlation has been noted in which there is a reduction of ϕ with an increase in the plasticity index. Figure 6-3 presents the ϕ' and Ip relationship based on which the angle of shearing resistance for Glacial Till is 32° for the characteristic Ip value of 17%.

In addition to the BS 8004:2015 and Sladen and Wrigley (1983) empirical correlations, guidance from the engineering experience of Irish Glacial Tills was also reviewed including Skipper et al. (2005), Long & Menkiti (2007), and Long et al. (2012). These peer-reviewed sources presented typical angle of shearing resistance values in the range of 34° to 38° for Irish Glacial Tills.

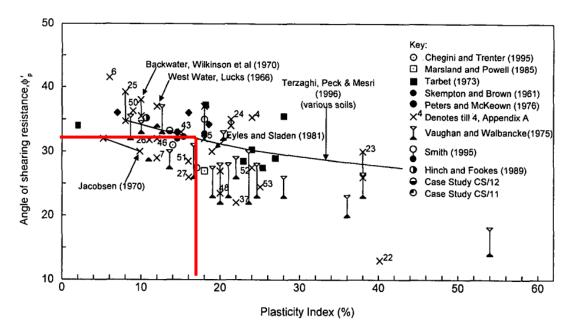


Figure 7-5: I.P. vs angle of shearing resistance (Sladen and Wrigley, 1983) for cohesive material

Following a review of the empirical correlations and the available literature, the characteristic ϕ' of the Made Ground and Glacial Till (Cohesive) is recommended to be taken as 30°.

7.1.5 YOUNG'S MODULUS

7.1.5.1 COHESIVE AND MIXED MATERIAL

The Young's moduli (E) of the overburden materials have been assessed using:

- The Clarke (2017) correlation between undrained shear strength and undrained Young's modulus (E_u) for cohesive normally consolidated cohesive materials[2],
- The Clayton (2011) correlation between Poisson's ratio, undrained Young's modulus and drained Young's modulus (E') for cohesive materials[3]

The E_u value can be assumed to be in the range of $500 - 1500 \times c_u$, based on the recommendations by Clarke (2017). In this design, an E_u/c_u factor of 500 has been adopted as this range correlated well with GDG's experience of similar ground models. The E' of cohesive soils is based on the following relationship from Clayton (2011):

$$\mathbf{E}' = \frac{1+v}{1.5}\mathbf{E}_u$$

Where υ is Poisson's ratio and is assumed to be in the range of 0.2 to 0.25. Taking υ to be 0.2 results in the above equation simplifying to:

$$E' = 0.8E_{u}$$

The range of Eu and E' is summarised in Table 7-7.

Table 7-7: Range of Eu and E' values

Stratum	E _u (MPa)	E'(MPa)
Made Ground	30-82.5 (56)	24-66 (45)
Glacial Till (Cohesive)	11-130 (68)*	8.8-104 (54)

*Average value

**z is the depth (m) from 0.0m BGL

Based on the above, a characteristic Young Modulus for drained and undrained conditions selected as summarised in Table 7-7.

Table 7-8: Characteristic Eu and E'

Stratum	E _u (MPa)	E'(MPa)
Made Ground	30	24
Glacial Till	22MPa for z≤2m BGL	17.6 for z≤2m BGL
(Cohesive)	Min (129, 35.8z-49.5) for z>2m BGL*	Min (103, 28.6z-39.6) for z >2m BGL

Note:

* z is the depth (m) from 0.0m BGL

7.1.6 COEFFICIENT OF VOLUME COMPRESSIBILITY

The coefficient of volume compressibility (m_v) was estimated for the fine-grained Cohesive Deposits using:

• The Stroud & Butler (1975) correlation between SPT N and m_v as shown in Figure 7-6.

The characteristic m_v values have been assessed to be near the high estimate of the value as this parameter is typically used as a multiplier to estimate ground movements during foundation design. Any designer should take cognisance that the design value of m_v is highly dependent on the stress level of interest.

Any designer should take cognisance that the design value of m_{ν} is highly dependent on the stress level of interest.

The coefficient of volume compressibility can also be estimated using the equation proposed by Stroud and Butler (1975):

$m_v = 1/(f_2*N)$

Where f_2 is a correlation factor determined using the plot produced by Stroud & Butler (1975) which has been reproduced in Table 7-7. Following this plot, the f_2 factor was taken as 600 for the Glacial Till (Cohesive) stratum which has I_p values typically between 10% and 27%, and 500 for the Made ground which has a characteristic I_p value of 23%. The characteristic coefficient of volume compressibility values determined using this correlation and the SPT N values from Figure 5-3 are shown inFigure 7-7 and results are presented in Table 7-9.

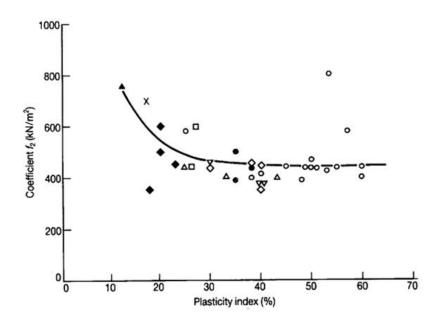
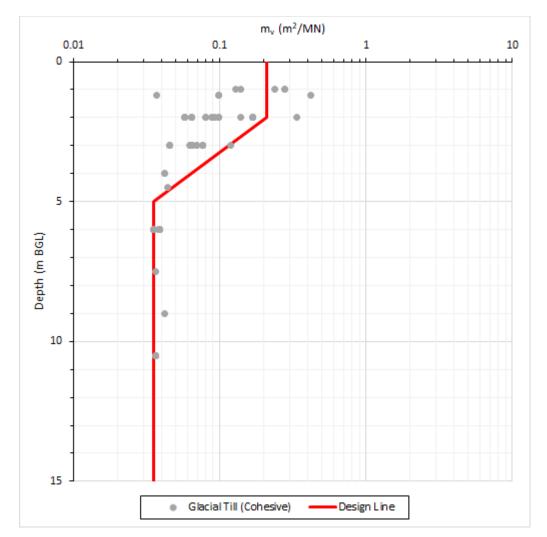



Figure 7-6: Correlation between SPT'N' and the coefficient of volume compressibility (Stroud and Butler, 1975)

Stratum	SPT 'N' (blows)	Ip (%)	f ₂	Characteristic m _v (m²/MN)
Made ground	12	23	500	0.17
Glacial Till (Cohesive)	N=4 for z≤2m BGL N=Min(44, 10z-16) for z>2m BGL	18	600	0.208 for z≤2m BGL Min(0.035, <u>1</u>) for z>2m BGL

Table 7-9: Summary of the characteristic coefficient of volume compressibility values

Due to the well-graded nature of Irish Glacial Tills, the recovery of representative undisturbed samples is rarely possible. Such samples were not recovered and as a result direct measurement of mv or similar compressibility parameters such as the compression index (Cc) were not available. It is also understood that the use of standard correlations between plasticity index, SPT N values and m_v,

such as Stroud & Butler (1975), result in overly conservative estimates of consolidation settlement. Furthermore, limited published literature refers directly to the stiff Glacial Tills of Ireland, with the vast majority of these focused on the Dublin Boulder Clay material which is localised around Dublin City and County. In the absence of direct geotechnical laboratory testing to determine site specific mv or Cc values or a suitable representative correlation, it is recommended that the Designer should estimate ground deformations using the correlated Eu and E' stiffness values for cohesive Glacial Till.

7.1.7 SUMMARY OF CHARACTERISTIC GEOTECHNICAL PARAMETERS

The characteristic geotechnical parameters to be used for the design were developed based on the available GI, relevant published design standards. A summary of the recommended geotechnical parameters is presented in Table 7-10. The majority of the characteristic parameters are typically based on low estimates, with a discrete number of characteristic parameters based on the best estimates (e.g., unit weight). Variations from this table may be required for other limit states, temporary works designs and constructability-related assessments. This table may be subject to change in later revisions of the GIR should further information become available and justify such alterations.

Table 7 10. Summary of the recommended enabled geoteenmeal parameters					
Parameter	Symbol (unit)	(Characteristic value		
Farameter	Symbol (unit)	Made Ground	Glacial Till (Cohesive)		
Plasticity Index	I _p (%)	23	17		
SPT N value	N (blows)	12	8 for z≤2m BGL Min(47, 13z-18) for z>2m BGL		
Bulk unit weight	γ _{bulk} (kN/m3)	20	20		
Dry unit weight	γ_{dry} (kN/m ³)	18	18		
Undrained shear strength	c _u (kPa)	60	44 for z≤2m BGL Min (258.5, 71.5z-99) for z>2mBGL		
Effective angle of shearing resistance	φ' (°)	30	30		
Effective cohesion	c' (kPa)	0	0		
Static undrained Young's modulus	E _u (MPa)	30	22 for z z≤2m BGL Min (129, 35.8z-49.5) for z>2m BGL		
Static drained Young's modulus	E' (MPa)	24	17.6 for z≤2m BGL Min (103, 28.6z-39.6) for z>2m BGL		
Coefficient of volume compressibility	m _v (m²/MN)	0.17	0.42 for z≤2m BGL Min (0.035, <u>1</u> _{7.8z-10.8}) for z>2m BGL		

Table 7-10: Summary of the recommended characteristic geotechnical parameters

8 CONTAMINATION ASSESSMENT

The following section presents an assessment of the investigation data concerning human health and the wider environment, including water environment, and buildings & structures.

The investigation and interpretation include the development of a Conceptual Site Model and subsequent risk assessment and has been undertaken in accordance with relevant guidance documents, including Land contamination risk management (LCRM) - How to assess and manage the risks from land contamination (UK Environment Agency 2020, last updated July 2023), Guidance On The Management Of Contaminated Land And Groundwater At EPA Licensed Sites (EPA Ireland, 2013), Environmental Risk Assessment for Unregulated Waste Disposal Sites (EPA Ireland, 2007) and Contaminated Land Risk Assessment, A Guide to Good Practice (CIRIA C552, 2001). Full details of the assessment are provided in subsequent sections of this report.

8.1 CONCEPTUAL SITE MODEL

The following assessment is partially qualitative, in that professional value judgments have been applied to the available site data in order to assess levels of risk. The framework for these assessments is set out in CIRIA C552, "Contaminated Land Risk Assessment, A Guide to Good Practice". This guidance states that the assessment of risk should be based on both the likelihood of an event and the severity of its potential consequences, one of the following six risk levels has been assigned to each potential pollutant linkage identified: Very Low, Low, Low/Moderate, Moderate, High and Very High. A risk of Low/Moderate or above indicates that further assessment, investigation or possibly remediation will be required.

The site to be developed for public open space with associated infrastructure, although parts of the site will be developed for residential dwellings, possibly with private gardens. The following assessment is intended to inform the understanding of potential contamination liabilities with the site and its current use and with respect to its proposed future use.

8.2 HUMAN HEALTH ASSESSMENT

8.2.1.1 DIRECT CONTACT/INGESTION/INHALATION

In order to assess the risks to future construction workers, members of the public and employees, soil chemical analysis results have been screened against Tier 1 values to be protective of the end users. Given the proposed use of site as a public open space with possible residential properties, the assessment has been conservatively based on a residential with gardens end-use. The chemical analysis is included in the Factual Report in Appendix A and the screened results and screening criteria are further included in Appendix B.

All available data have been included within this assessment, this includes the 22 soil samples which were tested and screened against residential Suitable for Use Values (S4ULs) derived by LQM and Category 4 Screening Levels (C4SLs, used to assess whether contaminants are at concentrations that potentially represent Contaminated Land) derived by CL:AIRE, where there is no relevant S4UL. It is noted that the C4SLs are based on the acceptance of a low level of toxicological concern, rather than

the more conservative standard adopted in the derivation of S4ULs, which are based on a tolerable or minimal level of risk.

The soil organic matter (SOM) for soil samples ranged from <0.1% to 6.3% with an average of 1.59%. Given the range (of SOM), the soil concentrations were compared with conservative screening values for a 1% SOM where available.

8.2.1.2 ASBESTOS

All soil samples tested as part of this assessment were screened for the presence of asbestos fibres. Below is a summary of the asbestos screen results, which indicate 2 samples of Made Ground contained asbestos in the form of chrysotile or amosite fibre bundles. The site investigation locations in which asbestos was identified were located to the rear of the existing residential properties, in the north of the site. Asbestos quantification was undertaken on 22 samples, which recorded less than LOD for 20 samples. A summary of the positive identification results is presented in the table below.

Location ID	Depth m (bgl)	Strata	Asbestos Type	Asbestos Quantification
TP05	0.5	Clay	Chrysotile	Present in fibre bundles
TP07	1.0	Made Ground	Amosite	Present in fibre bundles

Table 8-1: Summary of Asbestos results

8.2.1.3 POLYCYCLIC AROMATIC HYDROCARBONS (PAH)

All 22 soil samples were screened against their respective assessment criteria. Screening found none of the samples to contain polycyclic aromatic hydrocarbon concentrations exceeding their respective assessment criteria values.

8.2.1.4 PETROLEUM HYDROCARBONS

All 22 soil samples were screened against their respective assessment criteria. Screening found none of the samples to contain petroleum hydrocarbon concentrations exceeding their respective assessment criteria values.

8.2.1.5 METALS

All 22 samples were tested for 12 metals potentially present within the site, against the relevant S4ULs. Two samples showed lead concentrations above the screening value, again located to the rear of the existing residential properties, in the north of the site. Otherwise all samples were below the S4UL threshold on all metal tests.

Determinand	Maximum Determinand Value (mg/kg)	Screening Assessment Criteria	Source	Number of Exceedances	Locations
Lead	520.0	200.0	C4SL	2(22)	TP05 0.5m TP10 0.5m

Table 8-2: Summary of Metal Screening Value Exceedances

8.2.1.6 HUMAN HEALTH RISK ASSESSMENT

Considering the nature of the identified contaminants and their grouped locality between Asbestos and lead have been identified at concentrations above the relevant screening values in TP05, TP07, and TP10, located to the rear of the existing residential properties, in the north of the site. Considering the low magnitude of the concentrations and the limited access, these concentrations are generally considered to present a low risk to human health as part of the current use. However, during construction and as part of the proposed development, soils from this localised area should be considered to present a low to moderate risk due to the presence of lead and asbestos and the potential for human contact. Consequently, mitigation measures during construction and as part of the proposed development will be required.

Overall risk (current use): Low

Overall risk (construction): Low/Moderate

Overall risk (future use): Low/Moderate

8.2.2 GROUND GAS

Future site workers, construction workers and neighbouring site users are considered to be potential receptors, via the ingress of ground gases into buildings and subsequent inhalation, asphyxiation or explosion. The desk study identified no likely sources of significant ground gas on the site, and the investigation did not identify any soils with the potential to generate large volumes of ground gas and therefore in the absence of a source, the risk associated with ground gas is considered to be low.

The information about radon Section 2.10 of the desk study shows that the site is in a region of Medium risk, where approximately 1 in 20 properties may have elevated indoor radon measurements, and consequently any future residential development should consider the possible requirement for radon mitigation measures.

Overall risk (current use): Low

Overall risk (construction): Low

Overall risk (future use): Low (Radon should be considered for any future proposed buildings)

8.3 WATER ENVIRONMENT RISK ASSESSMENT

The proposed development is situated within the town of Monaghan and the desk study did not identify any likely sources of significant contamination to the nearby water environment. However, sensitive nearby receptors were identified, which include the River Shambles (crossing the site), Ulster Canal (50m south of the site) and groundwater (within the Monaghan PWS SO - Outer Protection Area associated with 7 abstractions, the two closest of which are located within approximately 500m of the site, to the west and north). Consequently, to further inform the assessment of risks to the water environment, geochemical testing was undertaken on soil leachate samples collected from across the site, and on surface water samples from the River Shambles. The results have been screened against relevant inland surface water screening values from the Water

Framework Directive 2015, including Environmental Quality Standards (EQS) to assess risks to surface water, and Drinking Water Standards to assess risks to the groundwater resource.

A total of 10 soil samples were collected from trial pits and boreholes across the site for geochemical testing of soil leachate. The obtained sample results were subsequently screened against surface water and groundwater standards separately to identify the potential risk of contaminants migrating from the soil to the surface water and groundwater. The aim was to identify the plausible contaminant sources and pathways, and to assess whether impact on the identified receptors is occurring.

8.3.1 SURFACE WATER RECEPTOR

The following section considers the results of the chemical analysis with respect to potential risks to surface water, i.e. the River Shambles that flows through the site, in a north-east direction.

8.3.1.1 SOIL LEACHATE PROTECTIVE OF SURFACE WATER

A summary of the Tier 1 exceedances recorded in the soil leachate results is provided in Table 8-3, which included occasional metals and PAH compounds. Considering the absence of a significant volume of soils with the potential to leach contamination and the likely dilution in the receiving water, the concentrations of lead, copper, phenanthrene, fluoranthene and pyrene are considered to be of low risk to surface water as they are within an order of magnitude of the screening criteria, or only marginally above LOD.

Determinand	Maximum Determinand Value	Leachate (SW) Screening Assessment Criteria	Source	Number of Exceedances (No. of Samples)
Copper (dissolved)	2.2 (μg/l)	1 (µg/l)	UK EQS	3(10)
Lead (dissolved)	3.5(µg/l)	1.2(µg/l)	UK EQS	1(10)
Phenanthrene	0.02 (µg/l)	0.1 (µg/l)	LOD	7(10)
Fluoranthene	0.03 (µg/l)	0.0063 (µg/l)	UK EQS	9(10)
Pyrene	0.02 (µg/l)	0.01 (µg/l)	LOD	1(10)

Table 8-3: Summary of Soil Leachate Results Screened against Surface Water Criteria

8.3.1.2 SURFACE WATER QUALITY

Two rounds of water sampling from the Shambles River were undertaken from locations upstream (SW1), two middle locations (SW2+SW3), and downstream of the site (SW4). A summary of the results is provided in Table 8-4. Although exceedances for TPH, PAH, copper and zinc were recorded, no observable increase in contamination was recorded between the upstream (background) locations at the point of entering the site, compared with the downgradient locations leaving the site, indicating that the site is not having a measurable effect on surface water quality. Also, the concentration of all contaminants identified in the surface water were at higher concentrations than in the soil leachate, indicating that the site soils are unlikely to be the source of the observed contamination in the surface water. This further supports the previous conclusion that the risk to surface water from the site soils is low.

Determinand	Maximum Determinand	Surface Water Screening	Source	Number of Exceedances (No.
Determinand	Value	Assessment Criteria	Source	of Samples)
Copper (dissolved)	3.7 (μg/l)	1.0 (μg/l)	UK EQS	5(8)
Zinc (dissolved)	120 (µg/l)	79 (μg/l)	UK EQS	2(8)
Acenaphthylene	0.28 (µg/l)	0.01 (µg/l)	LOD	2(8)
Acenaphthene	2.2 (μg/l)	0.01 (µg/l)	LOD	2(8)
Fluorene	0.76 (µg/l)	0.01 (µg/l)	LOD	3(8)
Phenanthrene	2.4 (μg/l)	0.01 (µg/l)	LOD	7(8)
Anthracene	0.12 (µg/l)	0.01 (µg/l)	UK EQS	1(8)
Fluoranthene	0.87 (µg/l)	0.0063(µg/l)	UK EQS	3(8)
Pyrene	2.8 (μg/l)	0.01 (µg/l)	LOD	3(8)
Benzo(a)anthracene	0.2 (µg/l)	0.01 (µg/l)	LOD	2(8)
Chrysene	3.4 (μg/l)	0.01 (µg/l)	LOD	3(8)
Benzo(b)fluoranthene	0.9 (µg/l)	0.01 (µg/l)	LOD	3(8)
Benzo(k)fluoranthene	0.15 (µg/l)	0.01 (µg/l)	LOD	2(8)
Benzo(a)pyrene	0.81 (µg/l)	0.00017 (µg/l)	UK EQS	3(8)
Indeno(1,2,3-cd)pyrene	0.18 (µg/l)	0.01 (µg/l)	LOD	2(8)
Dibenz(a.h)anthracene	0.16 (µg/l)	0.01 (µg/l)	LOD	1(8)
Benzo(ghi)perylene	0.28 (µg/l)	0.01 (µg/l)	LOD	2(8)
Aliphatic TPH >C10-C12	780 (μg/l)	300 (μg/l)	UK EQS	1(8)
Aliphatic TPH >C12-C16	5,100 (μg/l)	300 (μg/l)	UK EQS	1(8)
Aliphatic TPH >C16-C21	4,900 (μg/l)	1 (µg/l)	LOD	5(8)
Aliphatic TPH >C21-C35	1,500 (µg/l)	1 (µg/l)	LOD	5(8)
Aliphatic TPH >C35-C44	74 (μg/l)	1 (µg/l)	LOD	1(8)
Aromatic TPH >C10-C12	590 (µg/l)	90 (μg/l)	UK EQS	1(8)
Aromatic TPH >C12-C16	2,900 (µg/l)	90 (μg/l)	UK EQS	1(8)
Aromatic TPH >C16-C21	2,400 (µg/l)	90 (μg/l)	UK EQS	2(8)
Aromatic TPH >C21-C35	640 (μg/l)	90 (μg/l)	UK EQS	1(8)

Table 8-4: Summary of Surface Water Sample Results

8.3.2 GROUNDWATER RECEPTOR

The following section considers the results of the chemical analysis with respect to potential risks to groundwater, i.e. the regional groundwater present in the bedrock. Considering the presence of the surface water (Shambles River) within the site, it is likely that the surface water would be considered to be the primary controlled waters receptor, however, the following assessment has been undertaken on a conservative basis due to the proximity of two groundwater abstractions located within approximately 500m of the north and west of the site.

8.3.2.1 SOIL LEACHATE PROTECTIVE OF GROUNDWATER

The soil leachate results were screened against UK Drinking Water Standards, the World Health Organisation Drinking Water Standards, and the Groundwater Quality Standards (GQS), outlined in the 2015 Water Framework Directive. A summary of the results obtained in the testing and their exceedances encountered are provided below in Table 8-5.

The samples which exceeded their respective screening criteria (which was only marginal LOD exceedances of phenanthrene, fluoranthene, and pyrene) are considered to be of low risk to groundwater as they are within an order of magnitude of the screening criteria and even very low dilution factors would render these concentrations undetectable. Additionally, the investigation did not identify any significant volume of soils with the potential to leach contamination, and there is a considerable distance to the nearest abstraction point.

Determinand	Maximum Determinand Value	Leachate (GW) Screening Assessment Criteria	Source	Number of Exceedances (No. of Samples)
Phenanthrene	0.2 (µg/l)	0.1 (µg/l)	LOD	7(10)
Fluoranthene	0.3 (µg/l)	0.1 (µg/l)	LOD	6(10)
Pyrene	0.2 (µg/l)	0.1 (µg/l)	LOD	1(10)

Table 8-5: Summary of Soil Leachate Results Screened Against Groundwater Criteria

8.3.3 WATER ENVIRONMENT RISK ASSESSMENT CONCLUSIONS

The chemical analysis results indicate low concentrations of potentially leachable metals and PAHs within the Made Ground. However, no widespread source of significant soil contamination was recorded, and in general exceedances in the soil leachate were within an order of magnitude of the screening criteria for both groundwater and surface water, and so would be undetectable following dilution in the surface water or groundwater.

Also, no observable increase in contamination was recorded between the upstream (background) locations and the downgradient locations, indicating that the site is not having a measurable effect on surface water quality. Additionally, the surface water samples of the watercourse were higher in most contaminants than that of the soil leachate, further supporting the conclusion that the site is not the source of the observed contamination in the surface water.

On the basis of the above, the overall risk to the water environment (surface water and groundwater) from the site is considered to be Low.

Overall risk (current use): Low

Overall risk (construction): Low

Overall risk (future use): Low

8.4 BUILDINGS AND STRUCTURES

The current use of the site includes commercial and residential uses that are assumed to have some established underground water supply pipes. The following section details the assessment of risk to

water supply pipes and any new infrastructure, whilst ground gas risk is discussed in the human health section above.

The proposed development may require water supply pipes, although the final details of the design, including the route and level of proposed water supply pipelines relative to proposed earthworks, is currently unknown. Considering this, no testing following UKWIR requirements (Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites, UKWIR, 2010) was undertaken. However, comparison of the available chemical analysis results with UKWIR screening values suggests that there may be localised exceedances of the values for SVOCs and TPH, and consequently upgraded pipe materials may need to be considered, depending on what soils the pipes are laid within.

Overall risk (current use): Low

Overall risk (construction): Low

Overall risk (future use): Low/Moderate

8.5 SOIL DISPOSAL

A preliminary assessment based on observations from the trial pits and boreholes suggests that if materials are required to be removed from Site, predominantly inert classifications are likely to be encountered where natural ground is present. The Made Ground will mostly be classified as non-hazardous or locally hazardous for disposal purposes. The area surrounding TP05, TP07, and TP10 should be given additional consideration due to the noted presence of asbestos fibres and should be re-tested if disposal is decided upon. Prior to any material being disposed off-site, an appropriate waste classification and possibly waste acceptance criteria (WAC) testing should be undertaken. Disposal of such waste must be undertaken in accordance with all relevant current waste legislation and duty of care regulations.

9 GEOTECHNICAL RISK REGISTER

GDG is not the Project Supervisor Design Process (PSDP) as defined in the Safety, Health & Welfare at Work (SHW) (Construction) Regulations 2013 but has considered the geotechnical risks associated with the proposed embankment construction. GDG understand that under the Regulations, our duties are generally to:

- Identify any hazards that the design may present.
- Where possible, eliminate the hazards or reduce the risk.
- Communicate necessary control measures, design assumptions and remaining risks to the PSDP so they can be dealt with in the Safety and Health Plan.
- Co-operate with other designers and the PSDP or Project Supervisor Construction Stage (PSCS).

The following items have been identified as plausible geotechnical risks and should be incorporated into any risk registers or assessments for the project as a whole. Mitigation measures have been recommended for each geotechnical risk. The recommended mitigation measures are not mandated as part of the design process, nor do they override a designer's responsibility to assess and eliminate or mitigate risks identified in this GIR. The Designer of each design element shall be responsible for determining and designing the final mitigation measures at the detailed design stage.

The hazards and/or risks identified in Table 9-1 are not part of an exhaustive list. Additional hazards or risks may exist that have not been identified at this stage of the design process. All designers shall review the hazards and risks associated with the relevant design element and shall satisfy themselves that all hazards have been eliminated or mitigate any remaining risks as far as is reasonably practicable. The Designer shall also take all reasonable steps to provide sufficient information about aspects of the structure's design or its construction or maintenance as will adequately assist clients, other designers, and contractors to comply with their duties under the Regulations.

Id.	Risk	Description	Mitigation
1.	Incorrect estimation of characteristic soil strength parameters.	Geotechnical failure of structures due to insufficient bearing resistance, sliding resistance, loss of stability or lateral passive resistance.	This GIR proposes characteristic values for the soil parameters of each stratum encountered within the confines of the proposed scheme. The element designer shall satisfy themselves that the parameters presented in this GIR are representative of the stress state of the soil at the relevant limit state. The Designer may also choose different characteristic values that are representative of the stress state of the soil at the relevant limit state while paying due consideration to the limitations of the available ground investigation information. All geotechnical design shall be carried out in accordance with the relevant design code at the time of design. In general, the design principles of I.S. EN 1997-1:2005+A1:2013 (Eurocode 7) shall be followed. Partial factors shall be applied to the characteristic soil parameters, actions, and resistances during Ultimate Limit State checks to produce design values of the applied actions and resistances. The design values shall mitigate the risk of geotechnical failure.
2.	Incorrect estimation of characteristic soil stiffness parameters.	Excessive vertical settlement structures resulting in serviceability failure.	This GIR proposes characteristic values for the soil parameters of each stratum encountered within the confines of the proposed scheme. The element designer shall satisfy themselves that the parameters presented in this GIR are representative of the stress state of the soil at the relevant limit state. The Designer may also choose different characteristic values that are representative of the stress state of the soil at the relevant limit state due to the limitations of the available ground investigation information.
3.	Existing services.	Striking of existing services resulting in damage to existing infrastructure, disruption to local residents and businesses, and/or causing delays to construction.	This is an inherent risk particularly associated with excavation works and cannot be eliminated in full. The risk shall be managed at the construction stage by a competent contractor who shall review the full suite of service maps. Particular vigilance should be maintained in relation to uncharted services. Measures should be put in place to ensure that these services are not damaged during construction.
4.	Low-strength soil (Cohesive Deposits)	Failure of low-strength soil during excavation resulting in inundation	Low-strength Glacial Till (Cohesive) were encountered across the Site. These low- strength soils may be at risk of instability during excavation works. Where excavations are required for

Table 9-1: Geotechnical Risk Register

l	ld.	Risk	Description	Mitigation
			and/or damage to property or individuals	temporary or permanent works, the relevant Designer shall assess the risk and design suitable mitigation measures where deemed appropriate. The presence of granular layers could also pose issues where temporary excavations are proposed without side supports.
	5.	Raised groundwater level	Reduction in soil strength and stiffness resulting in inadequate geotechnical design resistances.	Continuous groundwater monitoring has not been conducted at either site and groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. It is therefore recommended that a conservative groundwater level is taken for design to mitigate against possible increases in porewater pressures or reductions in design resistances. As a minimum, the design groundwater levels should coincide with the upper bound groundwater profile recorded in the vicinity of the proposed design element.
	6.	Presence of gravels and oversized particles	Groundwater flow due high permeability of gravels and oversized particles encountered across the Site (Made ground and Granular Glacial Till)	Gravels and oversized particles (Made ground and Glacial Till - Granular) were encountered across the Site. These soils may be at risk of instability during excavation works. The presence of granular layers (due to its high permeability) could pose issues where temporary excavations are proposed without side supports. Where excavations are required for temporary or permanent works, the relevant Designer shall assess the risk and design suitable mitigation measures where deemed appropriate.
	7.	Presence of asbestos, lead and metal	Risk to human health from contamination associated with both construction and the proposed use due to the presence of asbestos fibres, lead and metal	The risk to human health from contamination is considered to be low to moderate predominantly due to the presence of asbestos fibres, lead and metal encountered in a localised area to the rear of the existing residential properties, in the north of the site, and the potential for human contact. The made ground and near-surface clay soils in this area require mitigation measures during construction to reduce risks to human health (both construction workers and off- site receptors), although these are expected to comprise standard construction practices such as damping down soils during dry periods. In addition, these soils should not be placed at the surface of the proposed development, although they will be suitable for reuse beneath a clean cover layer or hardstanding.

ld.	Risk	Description	Mitigation
8.	Presence of radon	Risk to human health from radon as the site is in a region of Medium risk (approximately 1 in 20 properties may have elevated indoor radon measurements).	The information about radon shows that the site is in a region of Medium risk, where approximately 1 in 20 properties may have elevated indoor radon measurements, and consequently any future residential development should consider the possible requirement for radon mitigation measures e.g. sealing, house or room pressurization, heat recovery ventilation and natural ventilation, sealing cracks and other openings in the foundation, vent pipe system and fan, sub-slab depressurization, etc.
9.	Unexpected contamination	Risk to human health from unexpected contation during earthqoirks or construction	If any unforeseen contamination be identified during earthworks or construction (e.g. hydrocarbon impacted soils, asbestos, etc.), then work in such areas should be halted until a suitably qualified professional has been consulted to assess the situation and provide advice.

10 CONCLUSIONS

GDG has completed the geotechnical interpretive report as requested by McAdam for a proposed Dublin Street Monaghan project Monaghan, Co. Monaghan. The aim of this report was to present the findings of an intrusive Ground Investigation at a proposed semi-private public open space development in Monaghan, with recommendations to address geotechnical or contamination issues where required. This has included assessment of potential contamination issues at the site in accordance with the 1992 Environment Protection Agency Act, as well as the suitability of the Site for the proposed use with respect to the Planning and Development Act 2000.

10.1 GEOTECHNICAL ASSESSMENT

From a geotechnical perspective the ground conditions revealed by intrusive investigation have been interpreted and the engineering test results have been assessed to provide outline guidance on geotechnical issues pertinent to the proposed development. It is highlighted that the geotechnical information detailed within this document is limited to the soil information made available at the time of writing.

A desk study, including an assessment of geology, lithology, hydrology and soil conditions, was completed for the entire site, a review of the intrusive ground investigations completed by Causeway Geotech in 2024 is also presented in this GIR as well as the historic data completed by IGSL in 2023 for Site 1 and Site 2. The ground model for the site has been evaluated. Groundwater levels encountered during drilling were reviewed.

Geotechnical soil parameters have been proposed for the soil materials encountered beneath the site including:

- The Standard Penetration Test values of the soil materials,
- The bulk unit weight of the soil materials,
- The undrained shear strength of the cohesive soil materials,
- The effective friction angle and cohesion of the soil materials,
- The drained and undrained stiffness modulus of the soil materials,
- The coefficient of volume compressibility of the cohesive soil materials.

The proposed characteristic soil parameters are presented in Table 7-10. The majority of the characteristic parameters are typically based on the low estimates, with a discrete number of characteristic parameters based on the best estimates (e.g. unit weight) or high estimates (e.g. coefficient of volume compressibility). Variations from this table may be required for other limit states, temporary works designs and constructability-related assessments. This table may be subject to change in later revisions of the GIR and further information become available and justify such alterations.

GDG has also identified several geotechnical risks and provided recommendations for mitigation measures in a geotechnical risk register. GDG further recommends that each Designer create geological sections as required for their relevant design locations.

10.2 GEOENVIRONEMINTAL ASSESSMENT

10.2.1 PROPOSED USE

The site is considered suitable for the proposed development, although the following sub-sections provide supplementary conclusions and/or recommendations to facilitate the site development.

10.2.1.1 HUMAN HEALTH

The risk to human health from contamination within the site associated with both construction and the proposed use is considered to be low to moderate, predominantly due to the presence of asbestos fibres and lead in TP05, TP07, and TP10, located to the rear of the existing residential properties, in the north of the site. The made ground and near-surface clay soils in this area require mitigation measures during construction to reduce risks to human health (both construction workers and off-site receptors), although these are expected to comprise standard construction practices such as damping down soils during dry periods. In addition, these soils should not be placed at the surface of the proposed development, although they will be suitable for reuse beneath a clean cover layer or hardstanding.

10.2.1.2 GROUND GAS

The desk study identified no contamination with the potential to generate significant ground gas, and there are no buildings proposed as part of this development. Consequently, the risk to the construction and the proposed development is low.

However, the site is in a region of Medium radon risk, where approximately 1 in 20 properties may have elevated indoor radon measurements, and consequently any future residential development should consider the possible requirement for radon mitigation measures in properties.

10.2.1.3 WATER ENVIRONMENT

The risk to the water environment is assessed to be low, considering the magnitude of the concentrations of potential contaminants in the soil leachate, the absence of a significant soil source of contamination, the likely dilution factors, that the surface water results do not indicate any impact from the site, and the distance to the groundwater abstraction points.

10.2.1.4 PROPOSED WATER PIPELINES

Considering the available chemical analysis results, risk to water pipelines is low/moderate and consideration may need to be given to upgrading pipes if they are to be laid within the site soils. Further assessment following UKWIR guidance may be required following design of the depth and location of the proposed pipeline in order to satisfy the requirements of the regulator.

10.2.1.5 SOILS DISPOSAL

At this stage of the design, it is not known if there is a requirement to remove soils from site. Preliminary assessment suggests that predominantly inert classifications are likely to be encountered where natural ground is present, and that the Made Ground will mostly be classified as non-hazardous or locally hazardous. If disposal is required, prior to any material being disposed offsite a waste classification should be undertaken, initially using the chemical analysis data from this investigation, although additional chemical analysis and waste acceptance criteria (WAC) testing may be required.

It is also recommended that a suitably experienced geoenvironmental / waste professional is consulted to accurately classify the materials and identify the most cost-effective disposal route. Any disposal of waste must be undertaken in accordance with all relevant current waste legislation and duty of care regulations.

10.2.1.6 POTENTIAL FOR UNEXPECTED CONTAMINATION

If any unforeseen contamination be identified during earthworks or construction (e.g. hydrocarbon impacted soils, asbestos, etc.), then work in such areas should be halted until a suitably qualified professional has been consulted to assess the situation and provide advice.

10.2.1.7 IMPORTED MATERIALS

It is recommended that any imported material required for construction purposes is subject to chemical analysis and assessed against relevant screening values to demonstrate its suitability for use.

11 REFERENCES

- [1] Causeway Geotech Ltd, September 2024. Dublin ST North, Monaghan, Gound Investigation Report.
- [2] Clarke, B.G., 2017. Engineering of glacial deposits, CRC Press.
- [3] Clayton, C. R. I., 2011. *Stiffness at small strain: research and practice,* Géotechnique 61, No. 1, 5–37.
- [4] British Standards Institution, 2015. BS 8004:2015. *Code of practice for foundations*, BSI Standards Publication.
- [5] Building Research Establishment. Construction Division. *Concrete in Aggressive Ground*. Watford, Bre Bookshop, 2005.
- [6] Building Research Establishment. *Soakaway Design*. Garston, Building Research Establishment, 1991.
- [7] Farrell, E. R., 1989. Settlement parameters of Dublin Black Boulder Clay. Ground Engineering, 22(5).
- [8] Farrell, E., 2016. Geotechnical properties of Irish glacial and interglacial soils–1st Hanrahan Lecture. Transactions, Institution of Engineers of Ireland, 139, 1-19.
- [9] Geological Survey Ireland, 2024. Geological Survey Spatial Resources Map Viewer. Available at: https://dcenr.maps.arcgis.com [Accessed: 17/09/2024].
- [10] Ground Engineering, 2007. Technical Note- Heavy weight. Available at: <u>https://cdn.ca.emap.com/wp-content/uploads/sites/9/2007/03/GE-Mar-2007-Super-heavy-dynamic-probe-DPSH-Warren.pdf</u>
- [11] IGSL Ltd, July 2023. Report on Site investigation Active Travel Project for Monaghan County Council. DBFL Consulting Engineers.
- [12] IGSL Ltd, July 2023. Report on Site investigation New Civic Offices for Monaghan County Council. CORA Consulting Engineers.
- [13] Regeneration Plan 'The plan area benefits from an existing Dublin Street Local Area Action Plan, 2011.
- [14] Long, M., & Menkiti, C. O., 2007. Geotechnical properties of Dublin boulder clay. Géotechnique, 57(7), 595-611.
- [15] Long, M., Quigley, P., & O'Connor, P., 2013. Undrained shear strength and stiffness of Irish glacial till from shear wave velocity.
- [16] Look, B.G., 2014. Handbook of geotechnical investigation and design tables. CRC Press.
- [17] National Standards Authority of Ireland, 2005. I.S. EN 1997-1:2005 Eurocode 7: Geotechnical design – Part 1: General rules (including Irish National Annex).

- [18] National Standards Authority of Ireland, 2013. I.S. EN 206:2013 Concrete Specification, performance, production and conformity (including Irish National Annex).
- [19] Ordnance Survey Ireland (OSI), 2024. GeoHive Map Viewer. Available at: https://webapps.geohive.ie/mapviewer/index.html [Accessed: 9/10/2024].
- [20] Skipper, J., Follett, B., Menkiti, C. O., Long, M., & Clark-Hughes, J., 2005. *The engineering geology and characterisation of Dublin Boulder Clay*. Quarterly Journal of Engineering Geology and Hydrogeology, 38(2), 171-187.
- [21] Stroud, M., (1989). The Standard Penetration Test Its Application and Interpretation. Proceedings of the geotechnology conference on penetration testing in the UK. London: Thomas Telford. pp. 29-79.
- [22] Shahien, M. M., & Farouk, A. (2013). Estimation of deformation modulus of gravelly soils using dynamic cone penetration tests. Ain Shams Engineering Journal, 4(4), 633-640.
- [23] Terzaghi, K., Peck, R., B., 1948 / 1967, "Soil Mechanics in Engineering Practice", John Wiley & Sons, USA.
- [24] Teagasc website (<u>https://www.teagasc.ie/crops/soil--soil-fertility/county-soil-maps/</u>), [Accessed: 10/10/2024].
- [25] Barnes G.E. (1995), "Soil Mechanics Principles and Practice", ISBN 978-0-333-59654-8, DOI 10.1007/978-1-349-13258-4

APPENDIX A – FACTUAL REPORTS

DUBLIN ST NORTH, MONAGHAN

GROUND INVESTIGATION REPORT

Report No.: 24-0640 **Client: Client's Representative:** September 2024 Date: FINAL **Report Status:**

Monaghan County Council McAdam Design Ltd

Causeway Geotech Ltd

8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL

+44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

red in Northern Ireland. Company Number: NI610766

CONTENTS

DOCUMENT CONTROL SHEET

METHODS OF DESCRIBING SOILS AND ROCKS

1	AUTH	ORITY	.1
2	PURP	OSE, RATIONALE & SCOPE OF THE INVESTIGATION	.1
3	DESCI	RIPTION OF SITE	.1
4	SITE (4.1 4.2	DPERATIONS SUMMARY OF SITE WORKS BOREHOLES	.2
	 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 	4.2.1 LIGHT PERCUSSION BOREHOLES	.3 .3 .3 .4 .4
	4.10	SURFACE WATER SAMPLING	.5
5	LABO 5.1 5.2	RATORY WORK GEOTECHNICAL LABORATORY TESTING OF SOILS ENVIRONMENTAL LABORATORY TESTING OF SOIL & WATER	.5
6	GROU 6.1 6.2 6.3	ND CONDITIONS GENERAL GEOLOGY OF THE AREA GROUND TYPES ENCOUNTERED DURING INVESTIGATION OF THE SITE GROUNDWATER	.6 .6
7	REFE	RENCES	.7

TABLES

Table 1: Summary of surrounding land	uses	2

APPENDICES

- Appendix A Site and exploratory hole location plans
- Appendix B Borehole logs
- Appendix C Trial pit logs
- Appendix D Trial pit photographs

- Appendix EInfiltration test resultsAppendix FPoint load test reportAppendix GIndirect in-situ CBR test results
- Appendix H Surface water monitoring
- Appendix I Geotechnical laboratory test results
- Appendix J Environmental laboratory test results
- Appendix K SPT hammer energy measurement report

DOCUMENT CONTROL SHEET

PROJECT REF:		24-0640							
PROJECT NAME:		Dublin St North, Monaghan							
CLIENT:		Monaghan County Council							
CLIENT'S REPRES	ENTATIVE	McAdam Desigr	McAdam Design Ltd						
REVISION	A00	STATUS	FINAL	17 th September 2024					
Prepared by:		Reviewed by:		Approved by:					
R	Ju.	Cline	Borey	Sia Ross.					
Buhlebenkosi Ang BSc. Geology	ie Ndebele	Celine Rooney BSc MSc PGeo (Eu	ırGeol)	Sean Ross BSc MSc PGeo MIEI					

This report presents a factual account of the ground investigation in accordance with the Specification and Related Documents for Ground Investigation in Ireland 2nd Edition, published by Engineers Ireland (2016).

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sample).
P	Nominal 100mm diameter undisturbed open tabe sample (unit waned sample).
В	
	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
C	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the tota blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	Uncorrected in situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975)
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relatin	g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/mode/maximum) measured in millimetres.

1 AUTHORITY

On the instructions of McAdam Design Ltd, ("the Client's Representative"), acting on the behalf of Monaghan County Council ("the Client"), a ground investigation was undertaken at the site to provide geotechnical and environmental information for input to the design and construction of a proposed residential development.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 PURPOSE, RATIONALE & SCOPE OF THE INVESTIGATION

The purpose of this investigation is to assess the ground conditions and to allow an evaluation of the geotechnical and environmental issues with the current site and proposed development.

The rationale has been determined by the Client's Representative, with the extent of the investigation including boreholes, trial pits, archaeological trenches, soil sampling, environmental sampling, surface water, in-situ and laboratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

The site is located at Irish Transverse Mercator 267299 333480 on the site of residential and industrial properties and access roads, located in Monaghan town, Co. Monaghan. The site location is presented in Appendix A and a summary of the surrounding land uses is presented in Table 1.

Table 1: Summary of surrounding land uses

Location	Description
North	Open green area, North Monaghan Primary Care Centre
South	Dublin Street, Old Cross Square, commercial properties
East	Residential premises, Monaghan WWTP/County Council yard
West	Glaslough Street, Diamond Centre, commercial premises

4 SITE OPERATIONS

4.1 SUMMARY OF SITE WORKS

Site operations, which were conducted between the 29th of July 2024 – 14th of August 2024, comprised:

- 3 no. light cable percussion boreholes
- 10 no. machine-dug trial pits
- 2 no. archaeological trenches
- in-situ testing, including:
 - Standard Penetration Tests
 - 1 no. infiltration test
 - 3 no. plate load tests
 - indirect CBR (DCP) tests at 4 no. locations
- GPS survey of all completed locations
- Surface water sampling at 4 no. locations

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, and as shown on the exploratory hole location plan in Appendix A.

4.2 BOREHOLES

4.2.1 LIGHT PERCUSSION BOREHOLES

Three boreholes (BH01-BH03) were put down to completion in minimum 200mm diameter using a Dando 2000 cable percussion boring rig. All boreholes were terminated on encountering virtual refusal on obstructions, such as large boulders.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Any water strikes encountered during boring were recorded along with any changes in their levels as the

borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.3 STANDARD PENETRATION TESTS

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 (BSI, 2011) at standard depth intervals using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible.

The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix J.

4.4 TRIAL PITS

Ten trial pits (TP01-TP10) were excavated using an 3t and 14t tracked excavator fitted with a 600mm wide bucket, to depths of 3.30m. Trial pit TP10 was excavated to allow completion of an infiltration test.

Environmental samples were taken at standard intervals in each trial pit. Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

Any water strikes encountered during excavation were recorded and the stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arisings provided in Appendix D.

4.5 ARCHAEOLOGICAL TRENCHES

Two archaeological trenches (TT01 and TT02) were excavated using a 3t tracked excavator fitted with a 600mm wide bucket, to a maximum depth of 0.70m, as directed by the supervising archaeologist.

The pit logs are shown in Appendix C with photographs presented in Appendix D.

4.6 INFILTRATION TESTS

One infiltration/soakaway test (TP10) was carried out in accordance with DG 365 Soakaway Design (BRE, 2016). The absence of the outflow from the pit precluded calculation of infiltration coefficients.

Appendix E presents the result and analysis of the infiltration test.

4.7 PLATE LOAD TESTS

Plate load tests were carried out at three locations (TP08, TP10, TP10A) in similarly numbered trial pits.

The plate load tests were conducted as incremental loading tests in accordance with Clause 4.1 of BS1377: Part 9: 1990 (BSI, 1990). A 450mm diameter bearing plate was used with five equal loadings to a maximum pressure of approximately 280kPa, followed by unloading. The testing was conducted using a wireless plate load testing system, PLATEMAN, which utilises Bluetooth technology with a remotely-operated rugged PDA system.

Plate movements were measured using three strain gauges fitted to a remotely fixed tripod frame. Each loading increment was maintained until the plate movement had essentially stopped.

The test results provided in Appendix F are as follows:

- plots of the plate settlements, average of the three gauges, against pressure.
- plots of average settlement against time during the loading increments/decrement.

The Modulus of Subgrade Reaction, *k*, is estimated by applying a "best fit" to the settlement-pressure plots, and is reported in MPa/m. The numerical value represents the pressure, in kPa, on the bearing plate that induces 1.25mm of settlement.

An approximate CBR value was estimated using the guidance provided in the Interim Advice Note 73/06 (Highways England, 2009) (now withdrawn). The document provides methods to convert the measured k value to the equivalent for a 762mm diameter plate and the consequent relationship with CBR. This method of estimating an equivalent CBR value is relatively conservative.

4.8 INDIRECT CBR TESTS (DCP)

An indirect CBR test was conducted at four locations (TP02, TP03, TP04 and TP07) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, and is discussed in CS229 (Highways England, 2020) which refers to the methodology described in TRL Overseas Road Note 18 (TRL, 1999).

The test results are presented in Appendix G in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is taken from TRRL Overseas Road Note 8 (TRRL, 1990).

Log CBR = 2.48-1.057 Log (mm/blow)

The frequently elevated CBR values may be due to the coarse-grained content of the penetrated soils and often do not accurately represent the characteristics of the soil matrix.

4.9 SURVEYING

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates Irish Transverse Mercator and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

4.10 SURFACE WATER SAMPLING

Two rounds of surface water sampling were carried out to allow for environmental testing at four locations, (SWS1–SWS4) two upstream and two downstream from the site along the Ulster Canal and Shambles river.

The environmental test results are presented in Appendix H.

5 LABORATORY WORK

Laboratory testing was carried out between 1st August – 16th September 2024.

5.1 GEOTECHNICAL LABORATORY TESTING OF SOILS

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- soil chemistry: pH, water soluble sulphate content and organic matter content

Laboratory testing of soils samples was carried out in accordance with BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (BSI, 2016), and Parts 2-9 (BSI, 1990).

The test results are presented in Appendix I.

5.2 ENVIRONMENTAL LABORATORY TESTING OF SOIL & WATER

Environmental testing, as specified by the Client's Representative, was conducted on selected environmental soil and water samples by Derwentside Environmental Testing Services in Consett, Durham.

This included testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)

- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Volatile Organic Compounds (VOCs)
- Semi-Volatile Organic Compounds (SVOCs)
- Polychlorinated biphenyls (PCBs)
- Phenols
- Organic matter
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate and sulphide
- Sulphur
- Phosphate
- Calcium
- pH
- Waste Acceptance Criteria (WAC)

Results of environmental laboratory testing are presented in Appendix J.

6 GROUND CONDITIONS

6.1 GENERAL GEOLOGY OF THE AREA

Published geological mapping from the online Geological Survey Ireland spatial resources database indicate the superficial deposits underlying the site comprise till derived from limestones. These deposits are shown to be underlain by dark muddy limestone, shale of the Ballysteen Formation.

6.2 GROUND TYPES ENCOUNTERED DURING INVESTIGATION OF THE SITE

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** between 50-400mm thick when encountered across the site.
- **Made Ground (fill):** was encountered in all exploratory holes and consisted of reworked sandy gravelly clay/sandy gravel fill with low cobble and boulder content with fragments of concrete, ceramics, plastic sheeting, metal, cloth, wire, tin, timber and brick extending to a depth of 2.20m in TP02 and TP07 where the pits terminated on obstructions.
- **Glacial Till:** sandy gravelly clay/silt, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth.

6.3 GROUNDWATER

Groundwater was noted in TP10 at a depth of 2.70m and damp below 2.20m in TP09. There were no other groundwater strikes noted during drilling/excavation of the remaining exploratory holes. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

Seasonal variation in groundwater levels should also be factored into design considerations.

7 **REFERENCES**

Association of Geotechnical and Geoenvironmental Specialists (AGS). (2022) *UK Specification for Ground Investigation*. 3rd Edition. ICE Publishing.

British Research Establishment (BRE). (2016) DG 365 Soakaway Design

British Standards Institute (BSI). (1990) BS 1377:1990: Methods of test for soils for civil engineering purposes – Parts 2-9.

British Standards Institute (BSI). (2007) BS EN 1997-2:2007: Eurocode 7 – Geotechnical Design – Part 2: Ground investigation and testing.

British Standards Institute (BSI). (2011) BS EN ISO 22476-3:2006+A1:2011 Geotechnical investigation and testing. Field testing – Standard penetration test.

British Standards Institute (BSI). (2016) BS 1377-1:2016: Methods of test for soils for civil engineering purposes – Part 1: General requirements and sample preparation.

British Standards Institute (BSI). (2018a) BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

British Standards Institute (BSI). (2018b) BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

British Standards Institute (BSI). (2020) BS5930:2015+A1:2020: Code of practice for ground investigations.

Geotechnical Society of Ireland. (2016) *Specification and Related Documents for Ground Investigation in Ireland.* 2nd Edition. Engineers Ireland.

Geological Survey Ireland (GSI). Geological Survey Ireland spatial resources database. Available at: https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2aaac3c228

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

APPENDIX B BOREHOLE LOGS

	CAUSEWAY GEOTECH Method Plant Used Depth Top Depth B						ct No. 1640	Project Name: Dublin St North, Monaghan Client: Monaghan County Council Client's Rep: McAdam Design Ltd						Borehole ID BH01 Sheet 1 of 1		
Metho Cable Percu		Plant Used Dando 2000	Depth Top 0.00	Depth B) 6	67412	inates 2.00 E	Final De			30/07/2024	Driller: CB	}	Scale: 1:40		
Depth	Sample /			Casing W	/ater L	evel	9.50 N	Elevatio	on: 66.01 mOD		30/07/2024	Logger: KH		FINAL		
(m)	Tests	Field Records	•	Depth D (m)		nOD	(m)	Legend	Legend Description WADE GROUND: Reworked slightly gravelly CLAY. Gravel is					Backfill	-	
).20 - 1.20).50	B3 ES1				65	5.71	- 0.30 - - -		subangular fine to c Soft becoming firm with low cobble cor to coarse. Cobbles a	dark brown sl ntent. Sand is	fine to coarse. G				0.5	
00 00 20 - 1.65 20 - 2.00 20 - 1.65	D6 ES2 D4 B10 SPT (S)	N=4 (1,0/0,1,1,2) Ham 1411	mer SN =	1.20 C	Dry		- - - - - -								1.0	
2.00 2.00 - 2.45 2.00 - 3.00 2.00 - 2.45	D7 D5 B11 SPT (S)	N=18 (3,6/7,7,2,2) Hai 1411	nmer SN =	2.00 E	Dry 63	3.61	- - - - - 2.40		Stiff dark brown slig cobble content. San				m		2.0	
8.00 8.00 - 3.45 8.00 - 3.38	D8 D9 SPT (S)	50 (4,8/50 for 231mm) Hammer	3.00 C		3.01	- - - - - - -		coarse. Cobbles are	subangular.		-			3.0	
		SN = 1411			62	2.51	- - - 3.50 -	• • • • • • • • • • • • • • •		End of Bore	ehole at 3.50m				3.9	
															4.1 4.2 5.1 6.1 6.1 7.1	
							-									
ruck at (m) Ca		r Strikes 1) Time (min) Rose to (m) From (3.40	m)	lling De To (m) 3.50	Time	: (hh:mm) 11:00	Remarks Inspection	n pit hand dug to 1.20	Im. No ground	water encounter	red.				
Casing D To (m) 1 3.50 1	Details Diameter 200	Water Added From (m) To (m)						Termina	tion Reason				ast Updat	ed 📕	_	
								Terminate	ed on obstruction.				17/09/202	4 A	G	

•	/ -	GEOT	ECH		24-(ct No. 0640	Project Name: Dublin St North, Monaghan Client: Monaghan County Council Client's Rep: McAdam Design Ltd	Borehole I BH02
Methor Cable Percu		Plant Used Dando 2000	Depth Top 0.00	Depth Base 2.70	Coordinates		inal Depth: 2.70 m Start Date: 31/07/2024 Driller: CB	Sheet 1 of Scale: 1:40
						0.60 E 7.30 N	Elevation: 63.17 mOD End Date: 31/07/2024 Logger: CR	FINAL
Depth (m)	Sample / Tests	Field Records	5	Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend Description	Backfill
	Tests B4 ES1 D3 ES2 B7 SPT (S) D5 D9 B8 SPT (S)	N=17 (2,4/4,5,4,4) Hai 1411 50 (4,4/50 for 215mm SN = 1411	mmer SN =	1.20 Dry			Legend Description MADE GROUND: Compacted angular fine to coarse GRAVEL. Firm becoming stiff dark brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is subangul fine to coarse. Cobbles are subangular. Recovered as angular coarse GRAVEL with clay. End of Borehole at 2.70m	_
						-		e
						-		
						-		
	Water	r Strikes		Chisellin	g Details		emarks	
uck at (m) Ca	asing to (m	Virine (min) Rose to (m) From (2.60	m) To	(m) Tim		spection pit hand dug to 1.20m. No groundwater encountered.	
	Diameter 200							t Updated

•			Projec 24-0	640	Project Name: Dublin St North, Monaghan Client: Monaghan County Council Client's Rep: McAdam Design Ltd						Borehole ID BH03 Sheet 1 of 1			
Metho Cable Percu		Plant Used Dando 2000	Depth Top 0.00	Depth 3.4	5	Coordi 667369 833737	9.00 E	Final Dep			29/07/2024 30/07/2024	Driller: CB	Sca	eet 1 of ale: 1:4
Depth	Sample /	Field Record	5	Casing Depth		Level	Depth	Legend		Desc	ription		5	Backfill
(m) .10 - 1.20 .50	B1 ES10			(m)		mOD 51.30	(m) 0.10		MADE GROUND: Cru MADE GROUND: Gr Sand is fine to coars lithologies.	ushed grey an eyish brown sl	gular coarse GRA	htly gravelly CLAY.	3	
.00 .00 .20 - 1.65 .20 - 2.00 .20 - 1.65	D3 ES11 D2 B5 SPT (S)	N=45 (2,2/7,8,11,19) SN = 1411	Hammer	0.00		50.70	0.70	0 <u>0</u> 0 <u>0</u> 00	Firm dark to lightish cobble content. San coarse. Cobbles are limestone.	d is fine to coa	arse. Gravel is su	Ibangular fine to		
.00 .00 - 2.45 .00 - 3.00 .00 - 2.45	D8 D9 B6 SPT (S)	N=12 (2,3/4,3,3,2) Ha 1411	mmer SN =	2.00	Dry		-							
3.00 3.00 - 3.30 3.00 - 3.45 3.00 - 3.30	D4 B7 D12 SPT (C)	50 (6,9/50 for 150mm SN = 1411) Hammer	3.00	Dry	58.40 57.95	- 3.00 3.45		Recovered as angula		VEL and COBBLE	S with much clay.		
						-	_							
						- - - - - -	_							
						-	-							
						-	-							
						-								
		r Strikes			elling D		<u></u>	Remarks						
JCK at (m) Ca	asing to (m) Time (min) Rose to (3.00		<u>To (m)</u> 3.30		(hh:mm) 1:00	Inspection	pit hand dug to 1.20	m. No ground	water encounter	red.		
Casing D To (m) [3.30 [etails Diameter 200	Water Added From (m) To (m)												
							Ī	Terminati	on Reason			Last U	Jpdated	

	CAUS G	EWAY	24-	ect No. 0640	Dublin	t Name: St North, Monaghan		Т	rial Pit ID
Method:	G	EOTECH	6675	dinates 10.50 E 55.90 N	Client: Monag Client'		TP01		
Trial Pitting Plant:			Elev	ation	Date:	ım Design Ltd	Logger:	S	cale: 1:25
3t Tracked Ex			67.25	mOD	09/08/	2024	RW		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water	
0.25 0.25 - 0.25 0.50	B4 ES1 B5		67.05	0.20		TOPSOIL MADE GROUND: Firm brown slightly sandy slightly gr fragments of red brick, plastic, tin and ceramics. Sand Gravel is subrounded fine to coarse.			
0.50 1.00 1.00 - 1.00	ES2 B6 ES3		66.35	0.90		Firm to stiff greyish brown slightly sandy slightly grav cobble and boulder content. Sand is fine to coarse. G fine to coarse. Cobbles and boulders are subrounded	ravel is subrou	ow nded	
				-					- - 1.5 — -
2.00	В7		64.95	2.30					 2.0
			04.95	2.30		End of trial pit at 2.30m			-
				-					2.5 —
									-
				- - - - - - -					3.0
				- - - - - -					
				- - - - - -					4.0
				· · · ·					
			Por	arks:					-
Wat Struck at (m)	er Strikes) Remarks	Depth: 2.30 Width: 0.40 Length: 2.30		roundwat	er encou	ntered.			
		Stability:		nination R				ast Update	
		Stable	Term	inated at m	naximum r	each of excavator.		17/09/2024	AGS

CAUSEWAY GEOTECH			Project No. 24-0640		Project Name: Dublin St North, Monaghan				rial Pit ID
H.	G	EOTECH	Coordinates		Client:		TP02		
Method:			66748	35.10 E	-	han County Council s Representative:			
Trial Pitting			83369	95.80 N		im Design Ltd			neet 1 of 1 cale: 1:25
Plant:			Elev	ation	Date:	0	Logger:		
3t Tracked Excavator			64.90	mOD	09/08/	2024	RW		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD) 64.85	Depth (m) 0.05	Legend	Description		Water	
0.25 0.25 0.50 0.50 - 0.50	B4 ES1 B5 ES2		64.70	0.20		MADE GROUND: Dark brown slightly sandy clayey ang GRAVEL with fragments of red brick. Sand is fine to co MADE GROUND: Very stiff light greyish brown slightly with fragments of red brick. Sand is fine to coarse. Gr fine to coarse.	barse. sandy gravelly CLAY		- - 0.5 — -
1.00 1.00 - 1.00	ES3 B6			· · · · ·					 1.0
1.50	ES7		63.30	1.60		MADE GROUND: Very stiff greyish brown slightly sand CLAY with low cobble and boulder content and fragm Sand is fine to coarse. Gravel is subrounded fine to co	ents of red brick.	_	1.5 — - -
2.00 2.00 - 2.00	B9 ES8		62.70	2.20		boulders are subrounded. End of trial pit at 2.20m			 2.0
									 2.5
				· · · ·					 3.0
				· · ·					- 3.5 — -
				· · · ·					4.0
				· · ·					4.5 — - -
									-
Wat Struck at (m	ter Strikes 1) Remarks	Depth: 2.20 Width: 0.60 Length: 2.60	No g	arks: roundwat pipe encc		ntered. at 1.15m, pit extended to the south-east.			
		Stability:	Term	nination F	Reason		Last Up	date	d
		Stable	Termi	inated at re	efusal on b	poulders.	17/09/	/2024	AGS

		EWAY		ect No. 0640	Dublin	t Name: St North, Monaghan		Trial Pit ID	
CAUSEWAY GEOTECH			- 6674	Coordinates 667473.40 E		Client: Monaghan County Council Client's Representative:			
Trial Pitting				48.90 N		m Design Ltd		heet 1 of 1 Scale: 1:25	
Plant: 3t Tracked Exc	solution			mOD	Date: 08/08/	2024 RW		FINAL	
Depth	Sample /	Field Records	Level	Depth	Legend	Description	Water		
(m)	Tests		(mOD) 71.68	(m) 0.05	Legenu	TOPSOIL			
0.25 0.25 - 0.25	B4 ES1		71.33	0.40		MADE GROUND: Grey slightly sandy slightly silty angular fine to co GRAVEL. Sand is fine to coarse.		-	
0.50 - 0.50 0.50 - 0.50	B5 ES2			-		MADE GROUND: Very stiff brown slightly gravelly sandy CLAY with cobble content and fragments of plastic. Sand is fine to coarse. Gr subrounded fine to coarse.		0.5	
1.00 1.00	B6 ES3		70.63	- - - 1.10		Very stiff brown slightly sandy slightly gravelly CLAY with low cobb boulder content. Sand is fine to coarse. Gravel is subrounded fine	le and to	1.0	
1.30	Β7			- - - - -		coarse. Cobbles are subrounded.		1.5	
			69.73	- 2.00		End of trial pit at 2.00m		2.0	
				• • • •					
				-				-	
				- 				3.0	
				-				3.5 —	
				-				-	
								4.0	
				• • • •					
				- - - - -				-	
Wate Struck at (m)	er Strikes Remarks	Depth: 2.00 Width: 0.90 Length: 2.50		a rks: roundwat	l er encou	I ntered.		I	
		Stability: Stable		nination R			Last Update 17/09/2024		

CAUSEWAY GEOTECH			Project No. 24-0640		Project Dublin		Trial Pit ID		
	CAUS	EWAY		dinates	Client:			ТР04	
	G	EOTECH		95.00 E		han County Council			
Method:				32.70 N		s Representative:		Sheet 1 of	
Trial Pitting Plant:					Date:	m Design Ltd	ar.	Scale: 1:2	5
3t Tracked Ex	cavator			Elevation 62.99 mOD		2024 RW		FINAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water	
			62.89	0.10		MADE GROUND: Brown clayey WOODCHIP			_
0.25 0.25 - 0.25	B4 ES1		62.59	- 0.40		MADE GROUND: Firm dark brown slightly sandy slightly grave with fragments of red brick, ceramics, plastic and roots. Sand coarse. Gravel is subrounded fine to coarse.			-
0.50 - 0.50 0.50 - 0.50	B5 ES2		02.39			Stiff orangish brown gravelly sandy SILT with low cobble conto fine to coarse. Gravel is subangular fine to coarse. Cobbles are subangular of sandstone.		0.5	s — - - -
1.00 1.00	B6 ES3			- - - - - -				1.0) -
1.50	Β7		61.59	1.40		Greyish brown sandy very silty angular fine to coarse GRAVEL medium cobble content. Sand is fine to coarse. Cobbles are si		1.5	5 — - -
2.20	B8		60.89	2.10	× ** ** ** ** **	Very stiff greyish brown slightly sandy slightly gravelly SILT wit cobble content. Sand is fine to coarse. Gravel is subangular fir		2.0	0
					× × × ×				_
			60.59	2.40		End of trial pit at 2.40m		2.5	5 — — —
				- - - - - - -				3.0	
				-				3.5	5 — - -
				- - - - - -				4.C	
				-					-
				- - - - - -				4.5	;
				-					
Wat Struck at (m	er Strikes) Remarks	Depth: 2.40 Width: 0.60 Length: 1.90		a rks: groundwat	ter encou	ntered.			
		Stability:	Tern	nination F	Reason		Last Upd	ated 🗖	┳
		Unstable below 1.40m				ery stiff silt.	17/09/20		iS

CAUSEWAY GEOTECH		Project No. 24-0640		Projec Dublin		Trial Pit ID		
	CAUS	EWAY	Coordinates		Client:		TP05	
	G	EOTECH		65.70 E		han County Council		
Method:				58.40 N		s Representative:		Sheet 1 of 1
Trial Pitting						Im Design Ltd		Scale: 1:25
Plant: 14T Tracked	Excavator			vation) mOD	Date: 13/08/	2024 MMC	r:	FINAL
Depth	Sample /	Field Records	Level	Depth	Legend	Description		Mater
(m)	Tests	Field Netorus	(mOD)	(m)	Legenu	MADE GROUND: Crushed angular coarse GRAVEL of limestone.		Š
0.50 0.50 - 0.50	B3 ES1		61.63	0.17		MADE GROUND: Brown slightly sandy CLAY with fragments of sheeting, metal, hosing, cloth, tyres, carpet, wire, radiator and Sand is fine to coarse.		
			60.85	- 0.95				-
1.00 1.00 - 1.00	B4 ES2		60.50	1.30		Firm rusty brown slightly gravelly CLAY with low cobble conten subangular fine to coarse of limestone. Cobbles are subangular subrounded of limestone. Firm slightly greyish brown slightly sandy gravelly CLAY with hip	r to	1.0
1.70	В3			- - - - -		content. Sand is fine to coarse. Gravel is subangular to angular limestone. Cobbles are subangular to angular of limestone.		
1.70 2.10	B5 ES2			- - - 				
2.50	B6			- - - - -				
			59.10	2.70		Firm slightly sandy slightly gravelly CLAY. Sand is fine to coarse. subangular fine to coarse of various lithologies.	Gravel is	3.0
3.20 3.20	B5 B7		58.50	3.30		End of trial pit at 3.30m		-
				- - - - - -				3.5
				- - - - - -				4.0
				- - - - - -				- 4.5 — -
				-				-
Wat Struck at (m	ter Strikes	Depth: 3.30 Width: 1.50 Length: 4.00		arks: groundwat	ter encou	intered		
		Stability:	Tern	nination F	Reason		Last Upda	ted
		Unstable	Term	inated at s	cheduled o	depth.	17/09/20	²⁴ AGS

				ect No. 0640		: Name: St North, Monaghan			Trial Pit ID
	CAUS	EWAY EOTECH		dinates	Client:				TP06
	G	IEOTECH	CC7284 00 F		Monag				
Method: Trial Pitting				50.40 N		s Representative: m Design Ltd	_		Sheet 1 of 1
Plant:			Elev	ation	Date:	m Design Ltd	Logger:		Scale: 1:25
1	3t Tracked Excavator			mOD	08/08/	2024	RW		FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water	
(,			62.03	0.05		MADE GROUND: Bluish grey sandy silty angular fine Sand is fine to coarse.	to medium (_
0.25	В4					MADE GROUND: Very stiff light brown slightly gravel low cobble and boulder content and fragments of pla	ly sandy CLA	Y with	-
0.25	ES1					brick. Sand is fine to coarse. Gravel is subangular fine			-
0.50 - 0.50	В5			-		and boulders are subangular.			0.5 —
0.50 - 0.50	ES2								
									-
									-
1.00 1.00	B6 ES3								1.0
									-
									-
			60.58	1.50		End of trial pit at 1.50m			1.5 —
									-
									2.0
									-
									-
				-					2.5 —
									-
									-
				—					3.0
									-
									-
				-					3.5 —
									-
				_					4.0
									-
									-
				-					4.5 —
									-
	+								
	er Strikes	Depth: 1.50		arks:	or oncou	ntorod			
Struck at (m)) Remarks	Width: 0.80	INO B	roundwat	er encou	ntered.			
		Length: 2.20							
		Stability:		nination R				Last Updat	
		Stable	Term	inated at re	efusal on b	oulders.		17/09/202	⁴ AGS

		Project No. 24-0640 Coordinates		Projec Dublin		Trial Pit ID		
GEOTECH				Client: Monag		TP07		
Method:				65.20 E		s Representative:		Sheet 1 of 1
Trial Pitting			83378	81.50 N	McAda	am Design Ltd		Scale: 1:25
Plant:				ation	Date:	Logger:		FINAL
3t Tracked Ex Depth	cavator Sample /		62.54	Depth	08/08/	/2024 RW	5	
(m)	Tests	Field Records	(mOD)	(m)	Legend	·	Water	
			62.49	0.05		MADE GROUND: Firm dark brown slightly sandy slightly gravelly with fragments of plastic, metal, styrofoam, wire and glass bottle		-
0.25	В4			-		s fine to coarse. Gravel is angular fine to coarse. MADE GROUND: Very stiff light brown slightly sandy gravelly CLA		-
0.25 - 0.25	ES1			-		low cobble content and fragments of red brick and concrete. Sar to coarse. Gravel is subangular fine to coarse. Cobbles are suban		-
0.50 0.50	B5 ES2			-				0.5 —
0.50	632			-				-
				-				-
			61.64	0.90		MADE GROUND: Greyish brown sandy very silty angular fine to c	oarse	-
1.00 1.00 - 1.00	B6 ES3					GRAVEL with medium cobble and boulder content. Sand is fine t Cobbles and boulders are subangular of limestone.	o coarse.	1.0
				-				-
			61.24	1.30		MADE GROUND: Firm greyish brown slightly sandy slightly grave		-
1.50	B7			-		with low cobble and boulder content and fragments of red brick fine to coarse. Gravel is subangular fine to coarse. Cobbles and b		
1.50 - 1.50	ES8			-		are subangular.		-
				-				-
				-				-
2.00	В9			-				2.0
2.00	ES10		60.24	-				-
			60.34	2.20		End of trial pit at 2.20m		-
				-				-
				-				2.5 -
				-				-
				-				-
				-				3.0
				-				-
				-				-
				-				-
				-				3.5 —
				- -				-
				-				-
				-				-
								4.0
				-				-
				-				-
				-				4.5 —
				-				-
				-				-
				-				-
				_				
	er Strikes	Depth: 2.20		arks: groundwat	er encou	Intered		
Struck at (m)	Remarks	Width: 0.60						
		Length: 2.50						
		Stability:	Tern	nination F	leason		Last Updat	ed
		Stable	Term	inated at re	efusal on l	poulders.	17/09/202	4 AGS

		Project No. 24-0640 Coordinates 667351.30 E		Project Dublin	1	Trial Pit ID		
GEOTECH					han County Council		TP08	
Method:				90.70 N		s Representative:		heet 1 of 1
Trial Pitting Plant:				/ation	Date:	m Design Ltd		Scale: 1:25
14T Tracked E	xcavator			mOD	13/08/	2024 MMC		FINAL
Depth	Sample /	Field Records	Level	Depth	Legend	Description	Water	
(m)	Tests	Tield Netorus	(mOD)	(m)		Crushed angular coarse GRAVEL of limestone.	Ň	
0.50 0.50 - 0.50	B3 ES1		62.71	0.10		MADE GROUND: Firm brown slightly sandy gravelly CLAY with fragor of brick and tile. Sand is fine to coarse. Gravel is subangular to an fine to coarse of various lithologies.		
1.00 1.00	B4 ES2		62.06	- 0.75 		Firm greyish brown slightly sandy gravelly CLAY with low cobble c and fragments of brick and cloth. Sand is fine to coarse. Gravel is subangular to angular of limestone. Cobbles are subangular of lin		
			61.61	1.20		Firm light brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is subangular fine to coarse limestone. Cobbles are subangular of limestone.		 1.5
1.80 1.80	B3 B5			- - - - - - - -				2.0
2.80	B6			- - - - - -				2.5 —
2.00			59.71	3.10		End of trial pit at 3.10m		3.0
				-				3.5 —
				- - - - - -				4.0
				- - - - -				4.5
				- - - 				-
Wate Struck at (m)	er Strikes Remarks	Depth: 3.10 Width: 1.20 Length: 4.00		a rks: groundwat	ter encou	ntered		
		Stability:	Tern	nination F	Reason		Last Update	ed 🔳 🔳
		1	1					

			Proj	ect No.	Project	Name:			Trial	Pit ID
	CALIS	SEWAY	24-	-0640	Dublin	St North, Monaghan				
		GEOTECH	Coor	dinates	Client:				ТР	09
		01011011	6673	36.10 E		han County Council				
Method:				71.80 N		Representative:			Sheet	1 of 1
Trial Pitting						m Design Ltd			Scale	: 1:25
Plant:		Elevation		Date: Logger:			FINAL		JΔI	
3T Tracked Ex) mOD	14/08/	2024	MMC			.,
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
			60.59	0.10		MADE GROUND: Brown very clayey crushed angular GRAVEL with brick.	fine to coarse			_
			00.00	-		MADE GROUND: Dark brown slightly sandy slightly g				_
				-		rootlets and fragments of brick. Sand is fine to coars subangular fine to coarse of limestone.	e. Gravel is			-
				-						_
0.50 0.50 - 0.50	B3 ES1			-						0.5 —
0.50 0.50	201			-						_
				-						_
				-						_
1.00	B4		59.64	1.05						1.0
1.00	ES2		55.04	- 1.05		Light yellowish brown slightly gravelly sandy CLAY. Sa Gravel is subangular to subrounded fine to coarse of		э.		-
				-		sandstone.				_
				-						_
1.50	В3			-						1.5 —
1.50	B5			-						_
				-						_
				-						-
				-						_
			58.69	- 2.00	×_×	Firm light brown mottled light greyish brown slightly		¥		2.0
		Damp at 2.20m		-	× ×	CLAY. Sand is fine to coarse. Gravel is subangular fine limestone.	to coarse of	-	<u>-</u>	_
2.30	B4			-	× ×					_
2.30	B6			-	×					_
			58.19	- 2.50	- <u></u>	End of trial pit at 2.50m				2.5
				-						-
				-						_
				-						_
				-						3.0
				-						-
				-						_
				-						_
				-						3.5 —
				-						_
				-						_
				-						-
				-						4.0
				-						4.0
				-						_
				[-
			1	-						_
										4.5
			1							_
				-						_
			1	-						_
	er Strikes	Depth: 2.50		harks: groundwat	er enco:	ntered				
Struck at (m) 2.20	Remarks Damp at 2.2		110 8	_o , ounuwdl	er encou	intered .				
2.20		Length: 3.00								
		Stability:	Terr	nination R	eason		Last	Upda	ted	
		Stable				um reach of excavator.		/09/202		ACC
		JUDIC		accu uue			1//	551202		AUD

		Project No. 24-0640 Coordinates 667356.50 E		Projec Dublin		Trial Pit ID		
Method:				Client:				
				Monag				
				833747.80 N		Client's Representative:		
Trial Pitting Plant: 14T Tracked Excavator				McAda Dete:		Scale: 1:25		
			Elevation 61.31 mOD		Date: Logger: 13/08/2024 MMC			FINAL
Depth	Sample /	Field Records	Level	Depth	Legend		Water	
(m)	Tests	Tiela Records	(mOD)	(m)	- Cegena	MADE GROUND: Light grey very sandy slightly silty angular fine to co		
			61.11	0.20		GRAVEL of limestone. Sand is fine to coarse.		-
			01.11	0.20		Firm dark grey slightly sandy slightly gravelly CLAY with a few rootled high organic odour. Sand is fine to coarse. Gravel is subangular to	ts and	-
				-		subrounded fine to coarse of various lithologies.		-
0.50 0.50 - 0.50	B3 B1		60.71	- 0.60				0.5 -
0.50 - 0.50	ES1					Firm brown slightly sandy slightly gravelly CLAY. Sand is fine to coars Gravel is subangular fine to coarse of sandstone.	e.	-
				-				-
1.00	B4			-				1.0
1.00	ES2			-				-
				-				-
				-		-		
				-				1.5 —
1.70	В3		59.71	1.60	× × × ×	Firm light brown slightly gravelly SILT. Gravel is medium to coarse of		-
1.70	B5			-	$\begin{pmatrix} x \\ x $	sandstone and limestone.		-
				-	(* * * * * * * *	- 4		-
				-	$(\times \times $	- - -		2.0
				-				-
				-		-		-
			58.91	2.40	<u>x</u>	Light brown slightly gravelly slightly sandy silty CLAY with medium co content. Sand is fine to coarse. Gravel is subangular to angular fine t		2.5 -
2.60	B4			-		content. Sand is line to coalse. Graver is subangular to angular me to coalse of limestone. Cobbles are subangular to angular of limestone		-
2.60	B6			-			T	-
				-	<u>x x c</u>			-
				-	<u>x o x o</u>			3.0
			58.21	3.10	<u>. • • • • • • · ·</u>	End of trial pit at 3.10m		-
				-				
				-				-
				-				3.5 —
				-				
				-				
				-				4.0
				-				
				-				
				[
				-				4.5 —
				-				-
				-				
				-				
	- Chuil		Barr	narks:				
Wat Struck at (m)	er Strikes Remarks	Depth: 3.10		1arks: groundwat	er encou	intered.		
2.70		Width: 1.00						
		Length: 5.00		nin cetto -			at 11-1 - 1 -	
		Stability:		nination R			ast Updat	
		Unstable	lerm	ninated at so	unequied	aeptn	17/09/202	4 AGS

CAUSEWAY GEOTECH Method: Archaeological Trench Plant:			24-	ect No. -0640	Project Name: Dublin St North, Monaghan Client:				Trial Pit ID TT01		
			Coordinates E N Elevation		Client: Monaghan County Council Client's Representative: McAdam Design Ltd Date: Logger:				Sheet 1 of 1 Scale: 1:25		
3t Tracked Exc			mOD		08/08/	2024	RW	FINAL			
3t Tracked Exc. Depth (m)	avator Sample / Tests	Field Records	Level (mOD)	mOD Depth (m) 0.20 0.40 0.	08/08/	2024 Description TOPSOIL <u>0.10-0.15m: Concrete encountered in</u> southwestern en MADE GROUND: Grey sandy angular fine to coarse of to coarse. MADE GROUND: Stiff dark brown slightly sandy slight with fragments of red brick. Sand is fine to coarse. Growel is subangular content. Sand is fine to coarse. Gravel is subangular Cobbles are angular. End of trial pit at 0.70m	nd of trench. GRAVEL. Sand is fine htly gravelly CLAY Gravel is angular fine	Water	FINAL		
Wate Struck at (m)	r Strikes Remarks	Depth: 0.70 Width: 1.60 Length: 7.00		narks:	er encou	ntered.			- - -		
		Stability: Stable		nination R		ist's instruction. Unable to survey location due to tree	Last Up e cover. 17/09,				

CAUSEWAY GEOTECH Method: Archaeological Trench Plant: 3t Tracked Excavator			24-	ect No. -0640	Project Name: Dublin St North, Monaghan				Trial Pit ID	
			Coordinates E N Elevation mOD		Client: Monaghan County Council Client's Representative: McAdam Design Ltd				TT02 Sheet 1 of 1	
									ale: 1:25	
					Date: 08/08/		ogger: W	FINA		
Depth	Sample /	Field Records	Level	Depth				Water		
(m)	Tests	Field Records		(m) 0.40 0.55 0.60	Legend	Description TOPSOIL MADE GROUND: Firm orangish brown slightly gravelly sa low cobble content and fragments of plastic, red brick, of are subangular. Stiff orangish brown slightly gravelly sandy SILT with low Sand is fine to coarse. Gravel is subangular fine to coarse subangular. End of trial pit at 0.60m	oncrete pipe and parse. Cobbles cobble content.	Wate		
Wate Struck at (m)	r Strikes Remarks	Depth: 0.60 Width: 1.60 Length: 7.60	No g	narks:		ntered.				
		Stability:		nination R			Last Upd		╵┠┛	
		Stable	Term	ninated on A	Archaeolog	ist's instruction. Unable to survey location due to tree cov	er. 17/09/2	024	AGS	

APPENDIX C TRIAL PIT LOGS

APPENDIX D TRIAL PIT PHOTOGRAPHS

Report No.: 24-0640

Report No.: 24-0640

TP01

TP01

Report No.: 24-0640

TP02

Report No.: 24-0640

TP02

Report No.: 24-0640

TP03

TP03

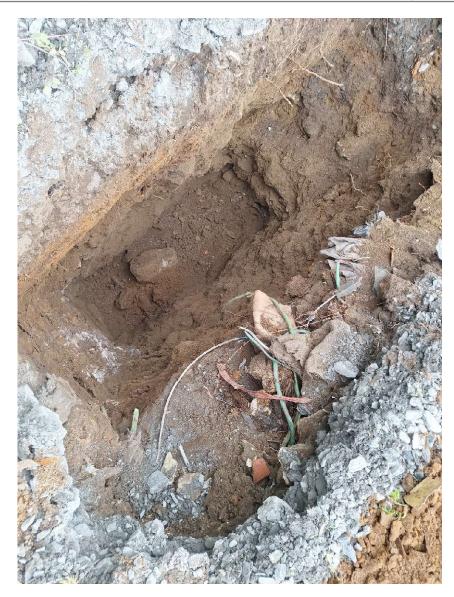
Report No.: 24-0640

Report No.: 24-0640

TP04

Report No.: 24-0640

TP04



Report No.: 24-0640

Report No.: 24-0640

Report No.: 24-0640

Report No.: 24-0640

TP05

TP05

Report No.: 24-0640

TP06

Report No.: 24-0640

TP06

Report No.: 24-0640

TP07

Report No.: 24-0640

TP07

Report No.: 24-0640

TP07

Report No.: 24-0640

TP08

TP08

Report No.: 24-0640

TP08

TP09

Report No.: 24-0640

TP09

TP09

Report No.: 24-0640

Report No.: 24-0640

Report No.: 24-0640

TP10

TP10

Report No.: 24-0640

TT01

Report No.: 24-0640


TT01

TT01

Report No.: 24-0640

TT02

Report No.: 24-0640

TT02

TT02

APPENDIX E INFILTRATION TESTS

Soakaway Infiltration Test

length (m)

1.60

0.40

Project No.:24-0640Site:Dublin St North MonaghanTest Location:TP10Test Date:13 August 2024

test pit top dimensions

test pit base dimensions

width (m)

0.70

0.20

Analysis using method as described in BRE Digest 365 and CIRIA Report C697-The SUDS Manual

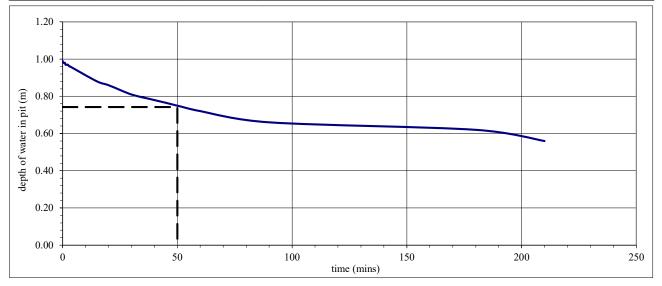
depth to groundwater before adding water (m) = DRY

test pit depth (m) 1.50								
	Depth to							
Time	water surface	in pit						
(mins)	(m)	(m)						
0	0.51	0.99						
0	0.52	0.98						
1	0.52	0.98						
1	0.53	0.97						
2	0.53	0.97						
2	0.53	0.97						
3	0.54	0.96						
3	0.54	0.96						
15	0.62	0.88						
20	0.64	0.86						
30	0.69	0.81						
40	0.72	0.78						
50	0.75	0.75						
60	0.78	0.72						
90	0.84	0.66						
180	0.88	0.62						
210	0.94	0.56						
270	1.00	0.50						

RESULTS (FROM GRAPH BELOW)

Test start

75% head of water at 0.74 m depth to water surface (target) 0.76 m time to reach target depth 50.0 mins


Test end

25% head of water at 0.25 m depth to water surface (target) 1.25 m time to reach target depth not reached

infiltration rate (q) is very low

TARGET DEPTHS AND CALCULATED VALUES

	depth to water	head of water	time	volume of	Area of walls and		
time	surface	in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m ²)	(m/min)	(m/h)
50	0.76	0.74	N/A				
			IN/A				

APPENDIX F PLATE LOAD TEST RESULTS

PLATE LOADING TEST REPORT

in accordance with BS 1377 : Part 9 Cl. 4.1 : 1990 Incremental loading test

Project	Dublin street	Test No:	TP-08
Client	Monaghan County Council	Lab Ref No:	24-0640
	c <i>i</i>	Date Reported	27.08.24
		Weather Conditions	Dry
Technician	MMC	Air Temperature °C	20
Date Tested Location	13.08.24	Plate Dia (mm)	455
GPS Coord's		Depth (m)	0.6
Material Type	Clay	Reaction Type	14t Excavator
No Cycles	1	App Weight (kg)	62
	Clay 1		

Plate Settlement (mm)	Applied Pressure (kN/m2)
0.00	0.0
2.44	71.2
6.04	143.3
12.63	212.7
23.12	282.9

	Cycle 1
Maximum Applied Pressure (kPa):	283
Maximum deformation (mm):	23.12
Modulus of subgrade reaction K (MN/m3):	29.2
K762 (MN/m3):	18.4
Estimated CBR (%):	1.5

Comments:

Displacement transducer(s) exceeded maximum range after 283kPa. Test data after that point has not been presented here.

Approved Signature Causeway Geotech Matthew Gilbert Associate

Test Remarks:

Calculation of Equivalent CBR Value from Plate Bearing Test taken from Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06 (now withdrawn). The results contained in this report relate to the sample(s) tested at source. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

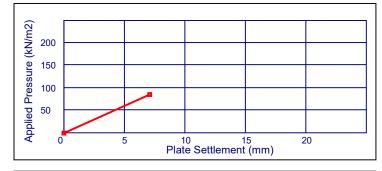


PLATE LOADING TEST REPORT

in accordance with BS 1377 : Part 9 Cl. 4.1 : 1990 Incremental loading test

Project Client	Dublin Street Monaghan County Council	Test No: Lab Ref No: Date Reported Weather Conditions	TP-10 24-0640 27.08.24 Dry
Technician	MMC	Air Temperature °C	20
Date Tested Location	13.08.24	Plate Dia (mm)	455
GPS Coord's		Depth (m)	0.5
Material Type	Clay	Reaction Type	14t Excavator
No Cycles	1	App Weight (kg)	62

Plate Settlement (mm)	Applied Pressure (kN/m2)
0.00	0.0
7.09	85.9

Ê						
E 2	20					
atiol	5					
1 netr	0					
ed 5	5					
Plate penetration (mm)		1				
ш	0		5 Tii	10 me elapsed (5 2 min.)	20

	Cycle 1
Maximum Applied Pressure (kPa):	86
Maximum deformation (mm):	7.09
Modulus of subgrade reaction K (MN/m3):	12.1
K762 (MN/m3):	7.6
Estimated CBR (%):	0.3

Comments:

Displacement transducer(s) exceeded maximum range after 86kPa. Test data after that point has not been presented here.

 \mathcal{N}

Approved Signature Causeway Geotech Matthew Gilbert Associate

Test Remarks: Calculation of Equivalent CBR Value from Plate Bearing Test taken from Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06 (now withdrawn). The results contained in this report relate to the sample(s) tested at source. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.


PLATE LOADING TEST REPORT

in accordance with BS 1377 : Part 9 Cl. 4.1 : 1990 Incremental loading test

Project Client	Dublin Street Monaghan County Council	Test No: Lab Ref No:	TP-10A 24-0640
Chent	Monagnan County Council	Date Reported Weather Conditions	27.08.24 Dry
Technician	MMC	Air Temperature °C	20
Date Tested Location	13.08.24	Plate Dia (mm)	455
GPS Coord's		Depth (m)	0.6
Material Type	Clay	Reaction Type	14t Excavator
No Cycles	1	App Weight (kg)	62

Plate	Applied
Settlement	Pressure
(mm)	(kN/m2)
0.00	0.0
5.10	68.3
13.21	140.3
30.29	202.9

	Cycle 1
Maximum Applied Pressure (kPa):	203
Maximum deformation (mm):	30.29
Modulus of subgrade reaction K (MN/m3):	13.4
K762 (MN/m3):	8.3
Estimated CBR (%):	0.4

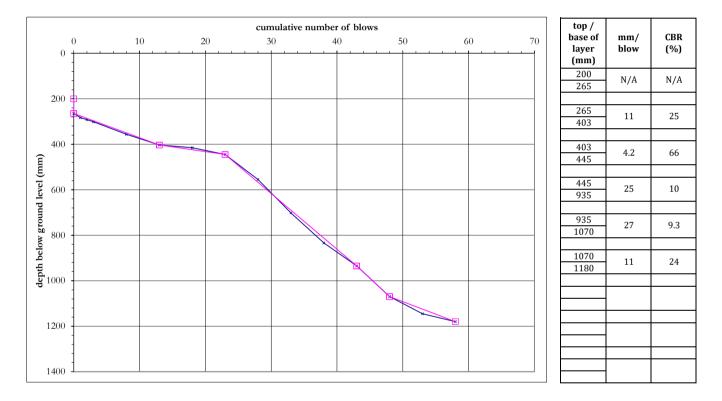
Comments:

Displacement transducer(s) exceeded maximum range after 203kPa. Test data after that point has not been presented here.

 \mathcal{N}

Approved Signature Causeway Geotech Matthew Gilbert Associate

Test Remarks: Calculation of Equivalent CBR Value from Plate Bearing Test taken from Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 4 Incorporating IAN 73/06 (now withdrawn). The results contained in this report relate to the sample(s) tested at source. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

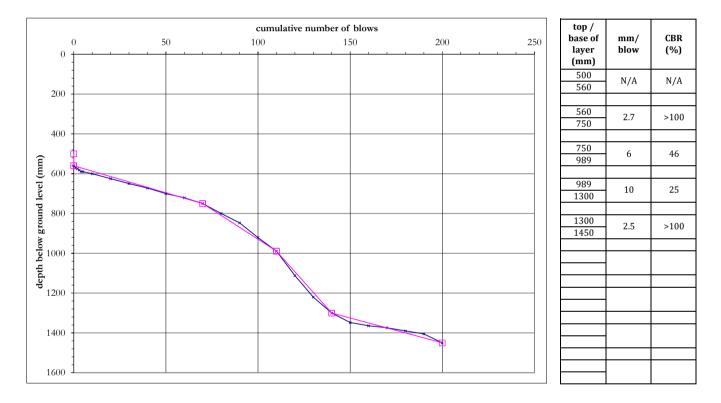

APPENDIX G INDIRECT IN-SITU CBR TEST RESULTS

Project Number	24-0640			
Project Name	Dublin Street North, Monaghan			
Site Location	TP02		GEOTECH	
			-	
Test Number	1		Date Tested	09/08/2024
Depth bgl (m)	0.20		Weather	Dry

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
Dug Down	MADE GROUND: Very stiff slighly sandy gravelly CLAY.

CBR Range	Min: 9.3	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The institu DCP reading (mm/blow) and CBR
	Max: 66	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

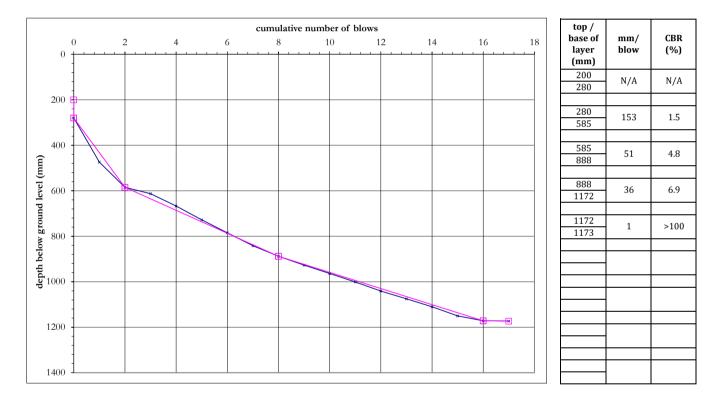

Deviation(s) from standard procedure	None
Observations and comments	

Project Number	24-0640					
Project Name	Dublin Street North, Monaghan			CAUSEWAY		
Site Location	TP03			GEOTECH		
Test Number	1		08/08/2024			
Depth bgl (m)	0.50		Weather	Wet		

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth	
Dug Down	MADE GROUND: Very stiff slightly gravelly sandy CLAY.	

CBR Range	Min: 25	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and
	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.


Deviation(s) from standard procedure	None
Observations and comments	

	Approved Name and Appointment		ස්ව
Darren O'Mahony Director	Jam O' l'Mo 7.	August 2024	

Project Number	24-0640						
Project Name	Dublin Street North, Monaghan						
Site Location	TP04			GEOTECH			
Test Number	1		08/08/2024				
Depth bgl (m)	0.20		Weather	Dry			

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

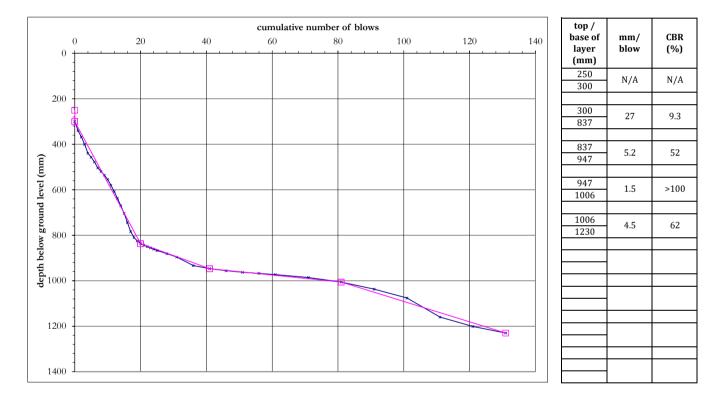
Surface preparation	Description of surface material at test depth	
Dug Down	MADE GROUND: Firm slightly sandy slightly gravelly CLAY.	

CBR Range	Min: 1.5	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and
	Max: >100	interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

 Approved Name and Appointment

 Darren O'Mahony


 Director

 August 2024

Project Number	24-0640						
Project Name	Dublin Street North, Monaghan			CAUSEWAY			
Site Location	TP07			GEOTECH			
Test Number	1	1 Date Tested					
Depth bgl (m)	0.25		Weather	Wet			

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4 and DMRB CS 229 Rev 0 CBR calculated using the TRRL CBR DCP relationship: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) in accordance with DMRB CS 229 Rev 0

Surface preparation	Description of surface material at test depth
Dug Down	MADE GROUND: Very stiff slightly sandy gravelly CLAY.

CBR	Min: 9.3	The self-weight penetration at the start of the test (shown above) has not been included in the minimum and maximum values shown to the left. The selection of layers is based on visual interpretation of the data. The institu DCP reading (mm/blow) and CBR
Range	Max: >100	values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory.

Deviation(s) from standard procedure	None
Observations and comments	

APPENDIX H SURFACE WATER ANALYSIS

Round 1

29/07/2024

Sampling location	Sampling location pH °C				
SW1	6.65	21.2	0.18	0.35	
SW2	SW2 6.9		0.23	0.45	
SW3	7.33	20.1	0.26	0.5	
SW4	7.53	20.5	0.36	0.73	

						-
Round 2		2	Ы	ın	 n	R

12/08/2024

Sampling location	pН	°C	PPT	mS	
SW1	7.87	17.4	0.14	0.28	
SW2	8.11	18.6	0.2	0.4	
SW3	7.97	18.6	0.2	0.39	
SW4	7.91	18.1	0.32	0.63	

APPENDIX I GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

Registered in Northern Ireland. Company Number: NI610766 REGIONAL OFFICE Causeway Geotech (IRL) Ltd Unit 1 Fingal House Stephenstown Industrial Estate

Balbriggan, Co Dublin, Ireland, K32 VR66

ROI: +353 (0)1 526 7465 Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

16 September 2024

Project Name:	Dublin St North, Monaghan
Project No.:	24-0640
Client:	Monaghan County Council
Engineer:	McAdam Design Ltd

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 26/08/2024 and 16/09/2024.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

John Wotin

Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

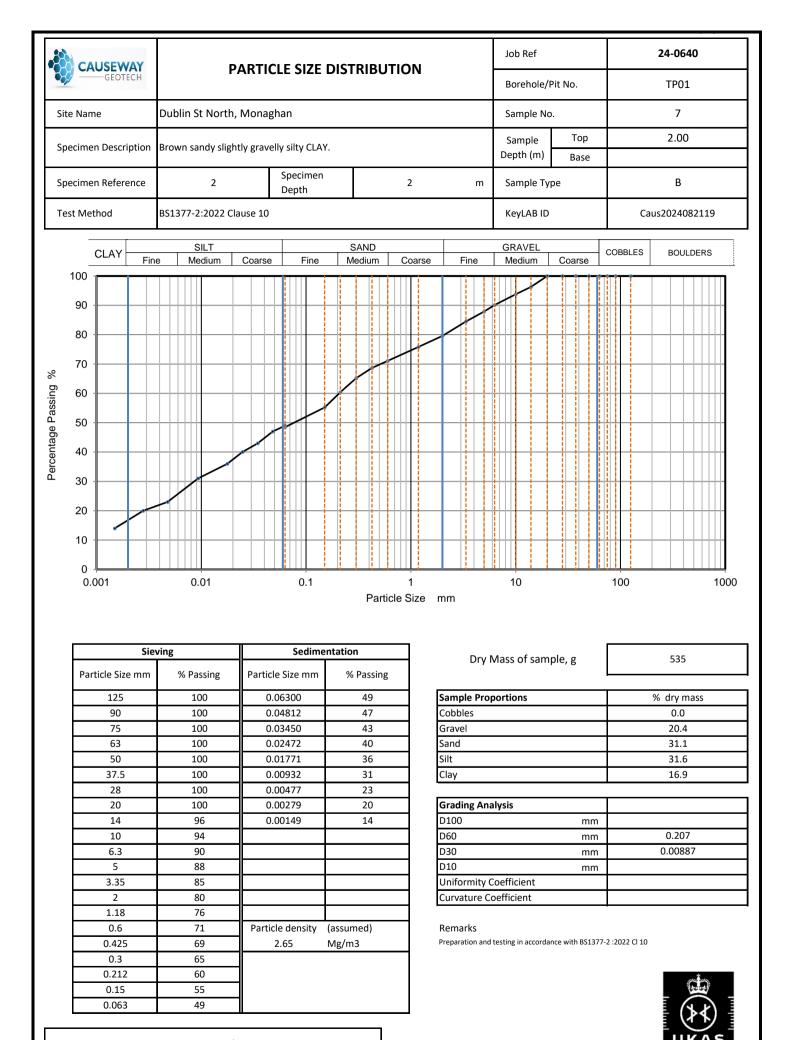
BRITISH DRILLING ASSOCIATION

Project Name: Dublin St North, Monaghan

Report Reference: Schedule 2

The table below details the tests carried out, the specifications used, and the number of tests included in this report. Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests.

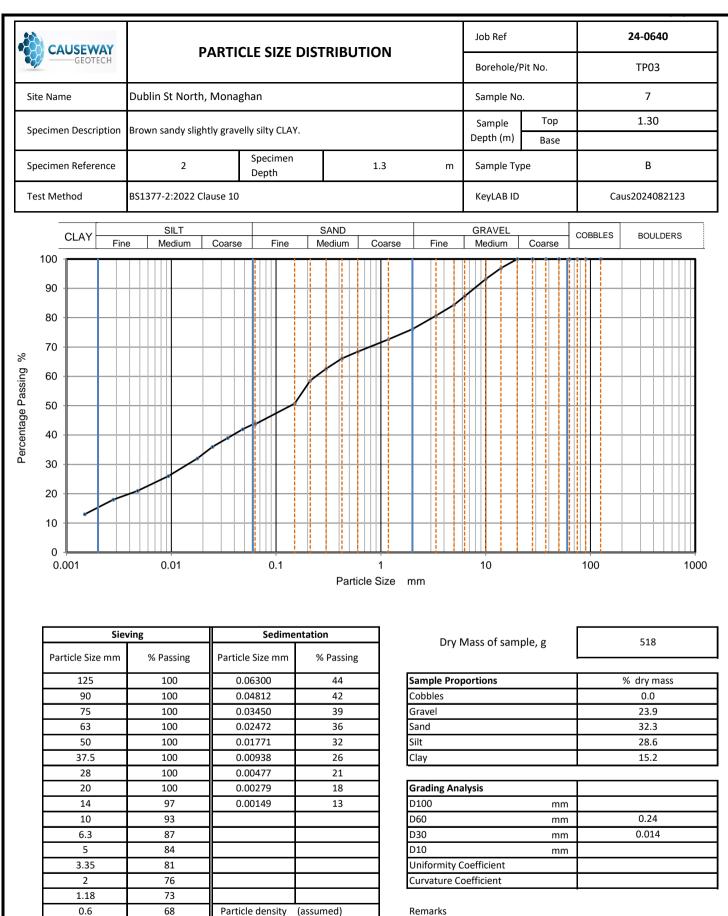
The results contained in this report relate to the sample(s) as received. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report shall not be reproduced other than in full, without the prior written approval of the laboratory.


Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Water Content of Soil	BS 1377-2: 2022: Cl 4	6
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 2022: Cl 5.3	3
SOIL	Particle size distribution - wet sieving	BS 1377-2: 2022: Cl 10	5
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 2022: Cl 10	5

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All subcontracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report		
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited <i>(UKAS 2139)</i>	pH Value of Soil	Documented In-House Method No DETSC 2008 based on BS 1377: Part 3:1990	3		
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	Sulphate Content water extract	Documented In-House Method No DETSC 2004 based on BS 1377: Part 3:1990	3		
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited <i>(UKAS 2139)</i>	Organic Matter Content	Documented In-House Method No DETSC 2002 based on BS 1377: Part 3:1990	1		


• C	AUSEW GEOT	AY ECH								sification Test Results					
Project No.	24-0640		Project	Name		Dubli	n St N	North, N	lonagha	เท					
Hole No.	Ref	Sar Top	nple Base	Туре	Specimen Description	Dens bulk Mg/m	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification	
TP01	6	1.00		В	Brown sandy slightly gravelly silty CLAY.			25	79	45 -1pt	18	27		CI	
TP02	6	1.00		В	Brown sandy slightly gravelly silty CLAY.			16							
TP03	6	1.00		В	Brown sandy slightly gravelly silty CLAY.			18							
TP04	6	1.00		В	Brown sandy slightly gravelly silty CLAY.			27	86	34 -1pt	20	14		CL	
TP04	8	2.20		В	Brown sandy slightly gravelly silty CLAY.			19	71	35 -1pt	18	17		CL/CI	
TP06	5	0.50		В	Brown sandy slightly gravelly silty CLAY.			16							
All tests per	rformed in a	lccordan	ce with E	3S1377-2	2:2022 unless specified oth	erwise							LAB	26R - Version 1	
Line	usity test ear measuremen • water displace			Liquid Lim 4pt cone u cas - Casa	nless : sp - sn			Date Printed 16/09/2024			Approved By				
wi -	wi - immersion in water 1pt - single point test								Step	hen	Watson	10122			

LAB 30R - Version 1

10122

Approved

Remarks

Mg/m3

2.65

Preparation and testing in accordance with BS1377-2 :2022 Cl 10

Approved

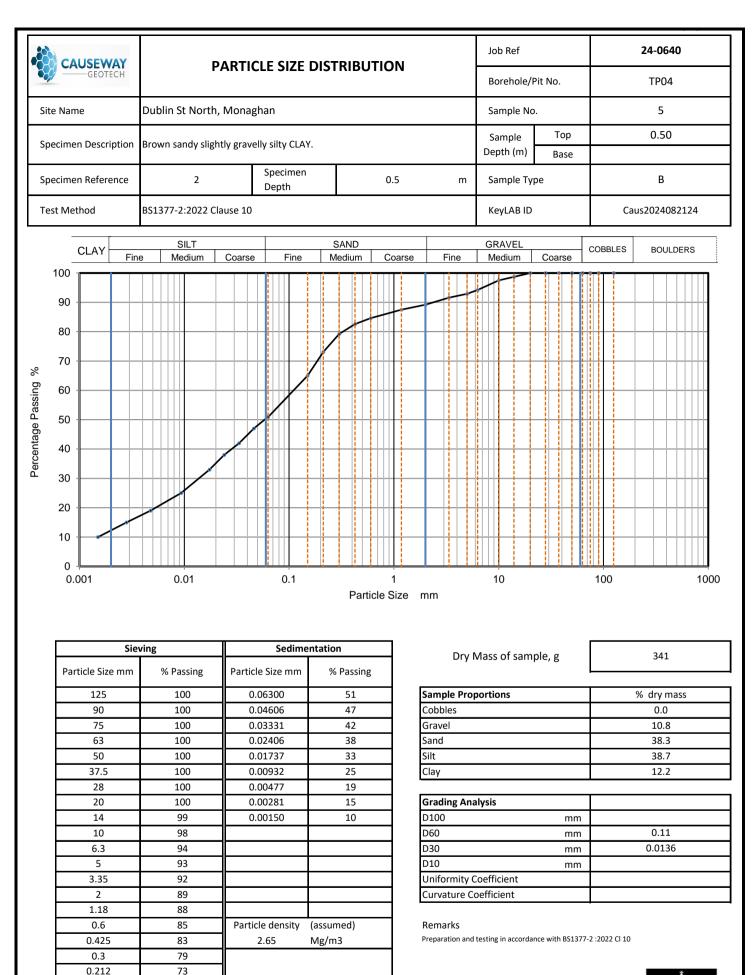
66

63

59

51

44


0.425

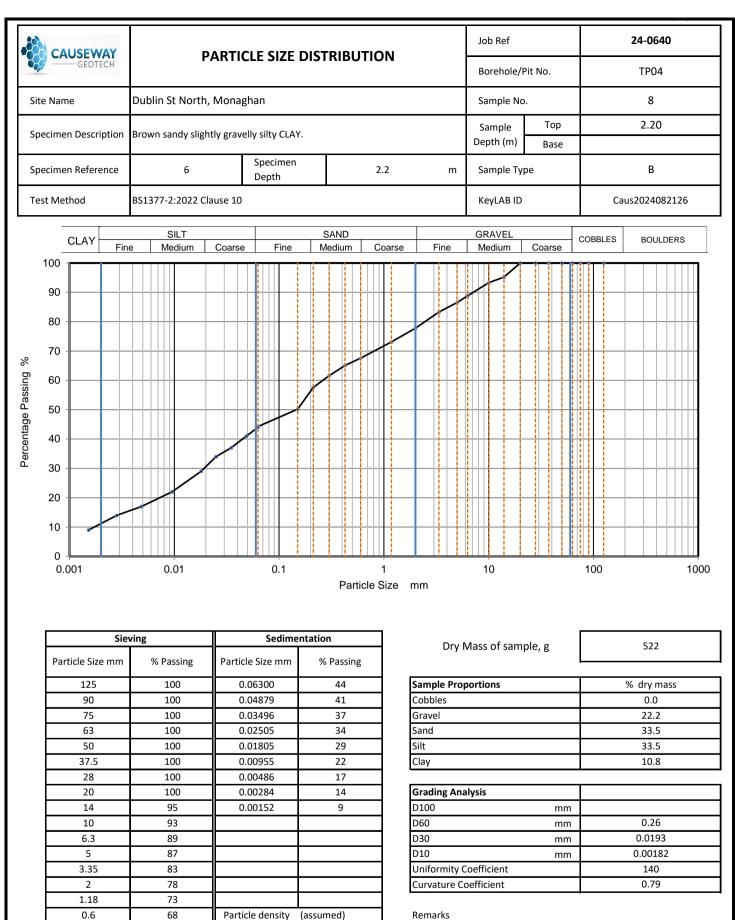
0.3

0.212

0.15

0.063

LAB 30R - Version 1


Approved

65

51

0.15

0.063

Remarks

Mg/m3

2.65

Preparation and testing in accordance with BS1377-2 :2022 Cl 10

Approved

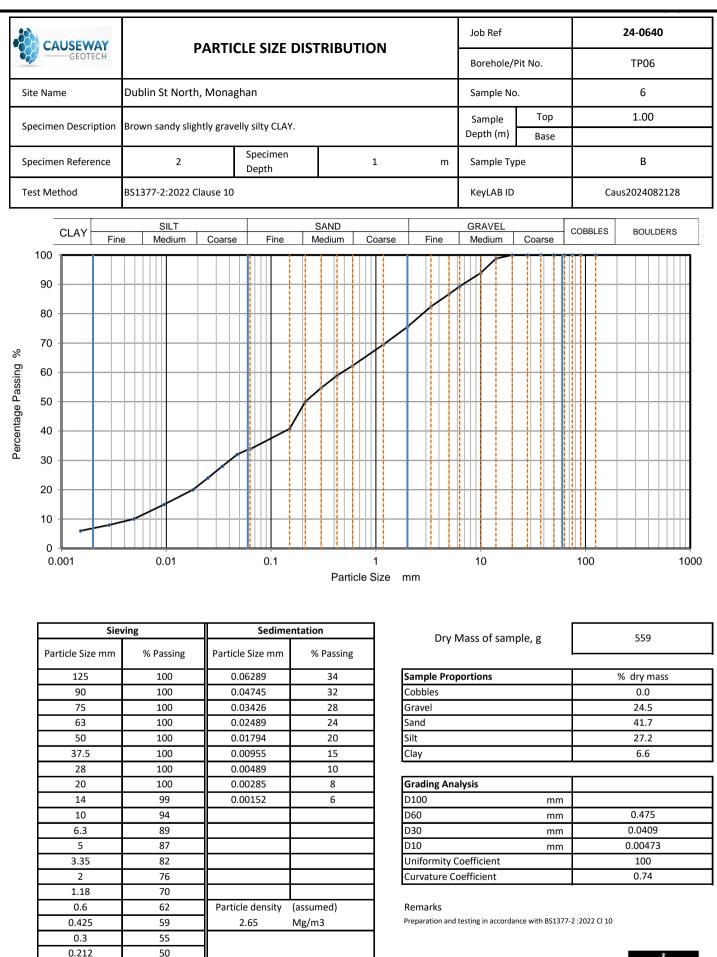
65

62

58

50

44


0.425

0.3

0.212

0.15

0.063

LAB 30R - Version 1

Stephen Watson

Approved

41

34

0.15

0.063

Certificate Number 24-18356

Client Causeway Geotech 8 Drumahiskey Road Ballymoney County Antrim BT53 7QL

- Our Reference 24-18356
- *Client Reference* ~ 24-0640
 - Order No ~ (not supplied)
 - Contract Title ~ DUBLIN ST NORTH, MONAGHAN
 - Description 4 Soil samples.
 - Date Received 02-Sep-24
 - Date Started 02-Sep-24
 - Date Completed 06-Sep-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

06-Sep-24

Issued:

Summary of Chemical Analysis Soil Samples

Our Ref 24-18356 Client Ref ~ 24-0640 Contract Title ~ DUBLIN ST NORTH, MONAGHAN

			Lab No	2386017	2386018	2386019	2386020
		San	nple ID ~	TP02	TP03	TP04	TP06
			Depth ~	1.00	0.50	0.50	0.50
		0	ther ID ~	6	5	5	5
		Samp	le Type ~	В	В	В	В
		Samplin	ng Date ~	30/08/2024	30/08/2024	30/08/2024	30/08/2024
		Samplin	ng Time ~	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Inorganics							
рН	DETSC 2008#		рН	8.7	8.2		8.4
Organic matter	DETSC 2002#	0.1	%			1.2	
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	130	39		23

Information in Support of the Analytical Results

Our Ref 24-18356 Client Ref ~ 24-0640 Contract ~ DUBLIN ST NORTH, MONAGHAN

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriat e container
Lab No	Sample ID ~	Sampled ~	Containers Received	tests	for tests
2386017	TP02 1.00 SOIL	30/08/24	PT 500ml		
2386018	TP03 0.50 SOIL	30/08/24	PT 500ml		
2386019	TP04 0.50 SOIL	30/08/24	PT 500ml		
2386020	TP06 0.50 SOIL	30/08/24	PT 500ml		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

#-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

HEAD OFFICE Causeway Geotech Ltd NI: +44 (0)28 276 66640

> Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE

Causeway Geotech (IRL) Ltd Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

16 September 2024

Project Name:	Dublin St North, Monaghan
Project No.:	24-0640
Client:	Monaghan County Council
Engineer:	McAdam Design Ltd

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 26/08/2024 and 16/09/2024.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Hopen Woton

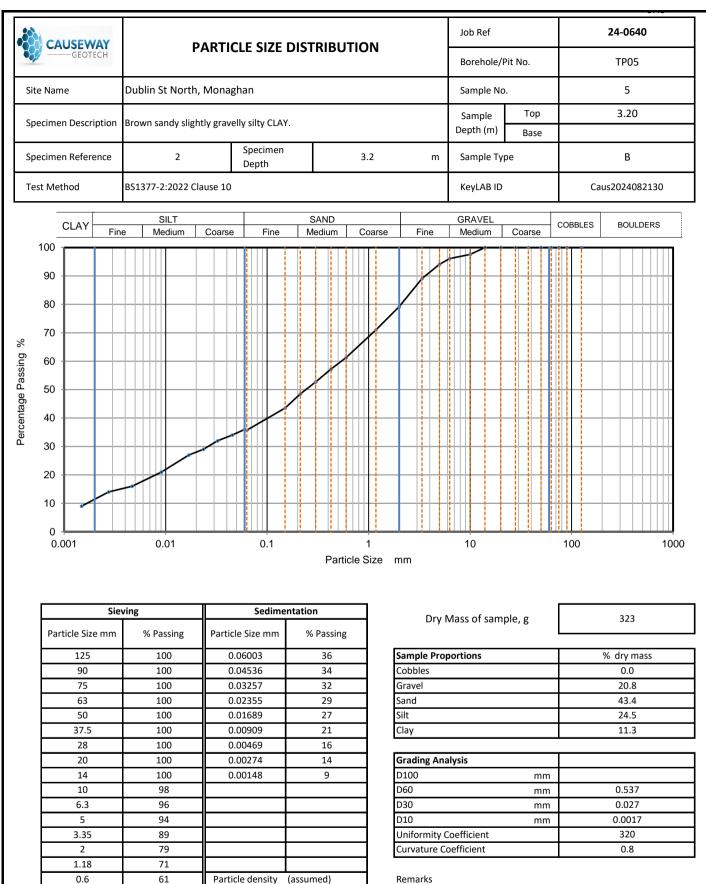
Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

Project Name: Dublin St North, Monaghan

Report Reference: Schedule 3

The table below details the tests carried out, the specifications used, and the number of tests included in this report. Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests.

The results contained in this report relate to the sample(s) as received. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report shall not be reproduced other than in full, without the prior written approval of the laboratory.


Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Water Content of Soil	BS 1377-2: 2022: Cl 4	4
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 2022: Cl 5.3	4
SOIL	Particle size distribution - wet sieving	BS 1377-2: 2022: Cl 10	4
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 2022: Cl 10	4

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All subcontracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited (UKAS 2139)	pH Value of Soil	Documented In-House Method No DETSC 2008 based on BS 1377: Part 3:1990	1
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited <i>(UKAS 2139)</i>	Sulphate Content water extract	Documented In-House Method No DETSC 2004 based on BS 1377: Part 3:1990	1
SOIL – Subcontracted to Derwentside Environmental Testing Services Limited <i>(UKAS 2139)</i>	Organic Matter Content	Documented In-House Method No DETSC 2002 based on BS 1377: Part 3:1990	1

CAUSEWAY GEOTECH					Summary	of Cl	ass	sifica	tion	Test I	Res	ults	5	
Project No. 24-	0640		Project	Name		Dublir	n St N	North, Monaghan						
Hole No.	Ref	Sar Top	nple Base	Туре	Specimen Description	Dens bulk Mg/m	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification
TP05	3	1.70		в	Brown sandy slightly gravelly silty CLAY.	5		15	49	32 -1pt	20	12		CL
TP08	3	1.80		в	Brown sandy slightly gravelly silty CLAY.			16	70	32 -1pt	17	15		CL
TP09	3	1.50		В	Brown slightly sandy silty CLAY.			42	81	42 -1pt	24	18		CI
TP10	3	1.70		В	Brown sandy slightly gravelly clayey SILT.			33	79	35 -1pt	25	10		ML/MI
All tests perfor	med in a	ccordan	ce with E	3S1377-2	2:2022 unless specified oth	erwise			1	I	1		LAB	26R - Version 1
Linear measurement unless : 4pt con wd - water displacement cas - Ca			nit Particle density			Date Printed Approved By 16/09/2024 Stephen Watson								

Remarks

Preparation and testing in accordance with BS1377-2 :2022 Cl 10

LAB 30R - Version 1

Approved

57

53

49

44

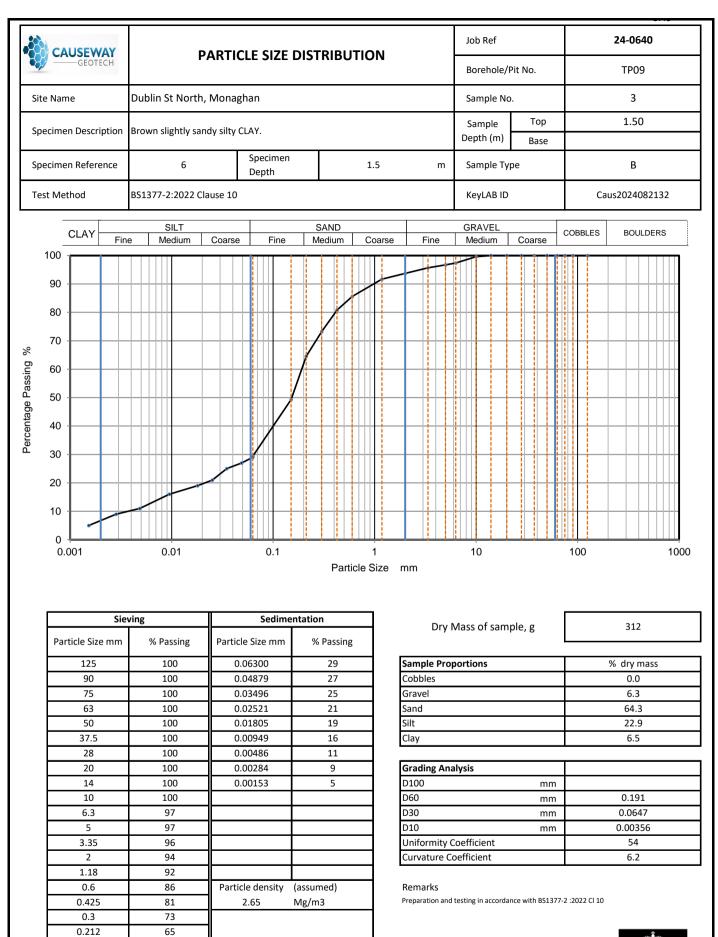
36

0.425

0.3

0.212

0.15


0.063

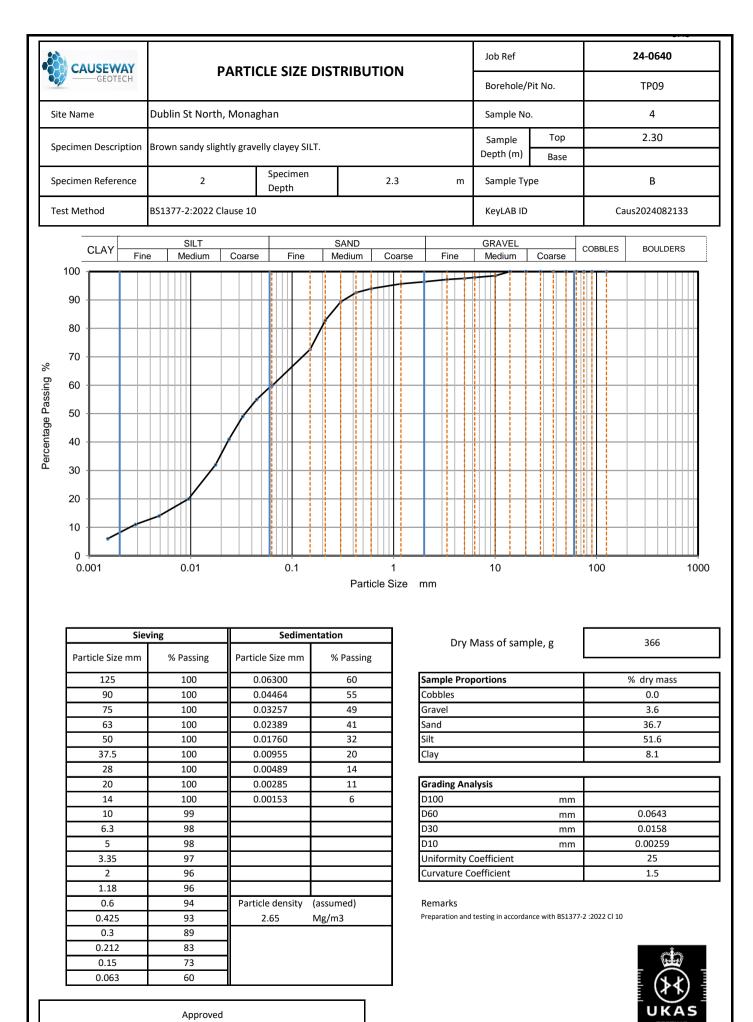
Stephen Watson

4

Mg/m3

2.65

LAB 30R - Version 1

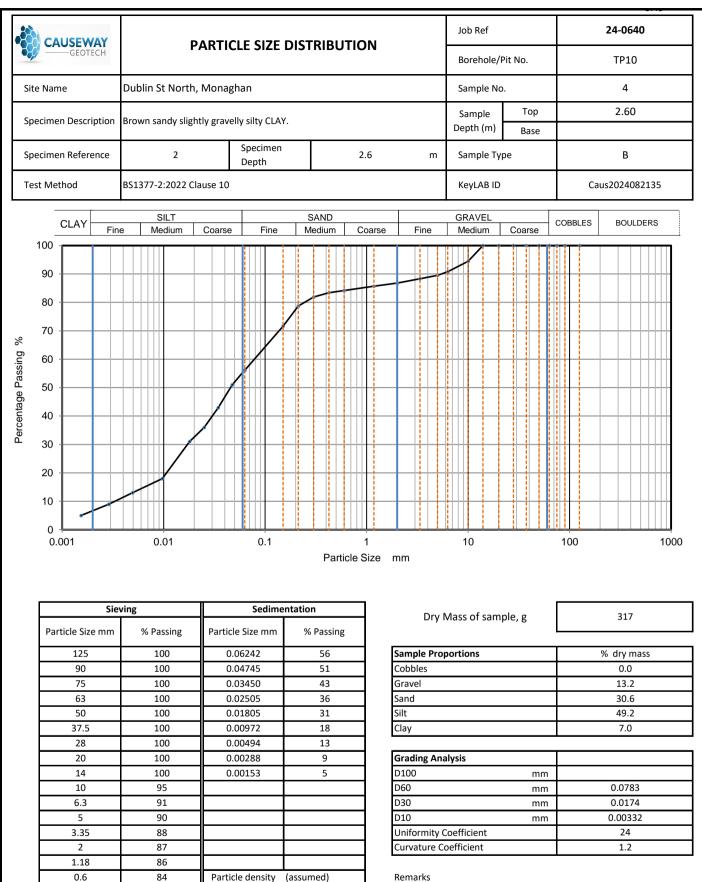

Approved

49

29

0.15

0.063



LAB 30R - Version 1

10122

Stephen Watson

6

Remarks

Preparation and testing in accordance with BS1377-2 :2022 Cl 10

LAB 30R - Version 1

Approved

83

82

79

72

56

0.425

0.3

0.212

0.15

0.063

Stephen Watson

7

Mg/m3

2.65

Issued:

06-Sep-24

Certificate Number 24-18355

Client Causeway Geotech 8 Drumahiskey Road Ballymoney County Antrim BT53 7QL

Our Reference 24-18355

Client Reference ~ 24-0640

Order No ~ (not supplied)

Contract Title ~ DUBLIN ST NORTH, MONAGHAN

Description One Soil sample.

Date Received 02-Sep-24

Date Started 02-Sep-24

Date Completed 06-Sep-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

emood

Kirk Bridgewood General Manager

Normec DETS Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Symbol key at end of report Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 3

Summary of Chemical Analysis Soil Samples

Our Ref 24-18355 Client Ref ~ 24-0640 Contract Title ~ DUBLIN ST NORTH, MONAGHAN

			Lab No	2386016
		San	nple ID ~	TP10
			Depth ~	0.50
		0	ther ID ~	1
		Sampl	le Type ~	В
		Samplin	ng Date ~	30/08/2024
		Samplin	g Time ~	n/s
Test	Method	LOD	Units	
Inorganics				
рН	DETSC 2008#		рН	7.9
Organic matter	DETSC 2002#	0.1	%	9.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	86

Information in Support of the Analytical Results

Our Ref 24-18355 Client Ref ~ 24-0640 Contract ~ DUBLIN ST NORTH, MONAGHAN

Containers Received & Deviating Samples

				Holding time	Inappropriat
		Date		exceeded for	e container
Lab No	Sample ID ~	Sampled ~	Containers Received	tests	for tests
2386016	TP10 0.50 SOIL	30/08/24	PT 500ml		
Key: P-Plasti	c T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

- # -MCERTS (accreditation only applies if report carries the MCERTS logo).
- \$ -subcontracted.
- n/s -not supplied.
- I/S -insufficient sample.
- U/S -unsuitable sample.
- t/f -to follow.
- nd -not detected.

End of Report

APPENDIX J ENVIRONMENTAL LABORATORY TEST RESULTS

Issued:

08-Aug-24

Certificate Number 24-15995

- Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66
- Our Reference 24-15995
- *Client Reference* ~ 24-0640
 - Order No ~ (not supplied)
 - Contract Title ~ Dublin St North Monaghan
 - Description 4 Water samples.
 - Date Received 01-Aug-24
 - Date Started 01-Aug-24
 - Date Completed 08-Aug-24
 - Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

Summary of Chemical Analysis Water Samples

Our Ref 24-15995 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

Contract Inter Dublin St North Mo	liagilali		Lab No	2372308	2372309	2372310	2372311
		San	nple ID ~	SW1	SW2	SW3	SW4
		Jan	Depth ~	5011	5112	5115	5001
		0	ther ID ~				
			e Type ~	EW	EW	EW	EW
		-		29/07/2024			
			g Time ~	n/s	25/07/2024 n/s		
Test	Method	LOD	Units	11/3	11/3	1,3	11/3
Metals	memou	102	011113				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.84	1.3	1.2	0.77
Boron, Dissolved	DETSC 2306*	0.012	mg/l	0.076	0.049		0.045
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03		
Calcium, Dissolved	DETSC 2306	0.09	mg/l	46	53		61
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0		< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0		
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.4	0.8		3.7
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.32	0.28		
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	1.1	1.9		2.6
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	120	79	46	62
Inorganics							1
Conductivity	DETSC 2009	1	uS/cm	282	439	467	641
рН	DETSC 2008		pН	7.1	7.1	7.1	7.4
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	< 0.0200	< 0.0200	< 0.0200	< 0.0200
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	< 0.1000	< 0.1000	< 0.1000	< 0.1000
Thiocyanate	DETSC 2130	20	ug/l	< 20	< 20	< 20	< 20
Dissolved Organic Carbon	DETSC 2085	2	mg/l	5.5	7.1	7.3	8.8
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	125	156	163	187
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.051	2.7	1.9	0.66
Sulphate as SO4	DETSC 2055	0.1	mg/l	3.1	15	15	33
Sulphide	DETSC 2208	0.01	mg/l	0.02	0.01	0.01	0.03
Sulphur as S, Total	DETSC 2320*	10	mg/l	< 10	< 10	61	11
Petroleum Hydrocarbons	1						
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 1.0	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 1.0	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 1.0	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	11	< 1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	870	180	1100	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l		81		< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	530	75	240	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l		21		< 1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0		
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l		< 1.0		
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l		< 1.0		
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l		< 1.0		
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0		
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	34	< 1.0	< 1.0	< 1.0

Summary of Chemical Analysis Water Samples

Our Ref 24-15995 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

	Lab No			2372308	2372309	2372310	2372311
	Sample ID ~			SW1	SW2	SW3	SW4
	Depth ~						
		Ot	her ID ~				
		Sample	e Type ~	EW	EW	EW	EW
		Samplin		29/07/2024	29/07/2024	29/07/2024	29/07/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	210	< 1.0	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	79	< 1.0	< 1.0	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	1200	< 1.0	< 1.0	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	1200	180	1100	< 1.0
Benzene	DETSC 3322	1	ug/l	< 1.0	< 10.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 10.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 10.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 10.0	< 1.0	< 1.0
MTBE	DETSC 3322	1	ug/l	< 1.0	< 10.0	< 1.0	< 1.0
PAHs							
Naphthalene	DETSC 3304	0.05	ug/l	< 0.50	< 0.50	< 0.50	< 0.50
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	0.15
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	0.17
Phenanthrene	DETSC 3304	0.01	ug/l	0.19	0.19	0.15	0.71
Anthracene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	0.87
Pyrene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	2.8
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	3.4
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	0.90
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	0.81
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	< 0.10	< 0.10
PAH Total	DETSC 3304	0.2	ug/l	< 2.00	< 2.00	< 2.00	9.8

Inannronriat

Information in Support of the Analytical Results

Our Ref 24-15995 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

		Date			e container
Lab No	Sample ID ~	Sampled ~	Containers Received	Holding time exceeded for tests	for tests
2372308	SW1 WATER	29/07/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2372309	SW2 WATER	29/07/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2372310	SW3 WATER	29/07/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2372311	SW4 WATER	29/07/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	

Key: G-Glass P-Plastic B-Bottle V-Vial

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Det	/ ci oliyin
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C44	EH_CU_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C44	EH_CU_1D_AR
Aromatic C10-C44	EH_CU_1D_AR
Ali/Aro C10-C44	EH_CU_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

Issued:

20-Aug-24

Certificate Number 24-17001

Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66

Our Reference 24-17001

Client Reference ~ 24-0640

Order No ~ (not supplied)

Contract Title ~ Dublin St North Monaghan

Description 4 Water No Information Supplied samples.

- Date Received 14-Aug-24
- Date Started 14-Aug-24
- Date Completed 20-Aug-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Semood

Kirk Bridgewood General Manager

i DETS

Summary of Chemical Analysis Water Samples

		Lab No		2378088	2378089	2378090	2378091
		Sam	nple ID ~	SWS1	SWS2	SWS3	SWS4
			Depth ~				
		Ot	ther ID ~	2	2	2	2
			e Type ~	EW	EW	EW	EW
		-	g Date ~	12/08/2024	12/08/2024	12/08/2024	12/08/2024
		Samplin	-	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.53	0.77		1.0
Boron, Dissolved	DETSC 2306*	0.012	mg/l	0.020	0.031	0.024	0.040
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03
Calcium, Dissolved	DETSC 2306	0.09	mg/l	40	50	43	57
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.2	2.1	1.9	2.7
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.50	0.28	0.56	0.30
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.9	1.4	1.4	2.2
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.35	0.34	< 0.25	0.33
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	61	65	11	90
Inorganics							
Conductivity	DETSC 2009	1	uS/cm	232	381	347	625
рН	DETSC 2008		рН	6.5	6.7	6.8	6.9
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l	0.0011	0.0011	0.0018	0.0030
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	0.0007	0.0007	0.0012	0.0014
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	0.0022	< 0.0015	0.0026	0.0046
Thiocyanate	DETSC 2130	20	ug/l	< 20	< 20	< 20	< 20
Dissolved Organic Carbon	DETSC 2085	2	mg/l	6.4	6.6	5.8	9.3
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	111	149	130	176
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.33	1.2	1.6	3.4
Sulphate as SO4	DETSC 2055	0.1	mg/l	7.3	18	17	27
Sulphide	DETSC 2208	0.01	mg/l	0.03	0.01	0.11	0.01
Sulphur as S, Total	DETSC 2320*	10	mg/l	< 10	< 10	< 10	12
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	26	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	780		< 1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	12000		< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	5100	280	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	4900	400	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	1500	160	< 1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	20		< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	48	< 0.1	< 0.1
Aromatic C10-C12: EH CU 1D AR	DETSC 3072*	1	ug/l	< 1.0	590		< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	2900	< 1.0	< 1.0
Aromatic C12-C10: EH_CU_1D_AR		1		< 1.0	2900		< 1.0
	DETSC 3072*	1	ug/l	< 1.0	2400	< 1.0	< 1.0

Our Ref 24-17001 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

	Lab No			2378088	2378089	2378090	2378091
		Sam	ple ID ~	SWS1	SWS2	SWS3	SWS4
			Depth ~	50051	50052	50055	50054
			her ID ~	2	2	2	2
			e Type ~	EW	EW	EW	EW
		Samplin			12/08/2024		
		Sampling	-	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	640	< 1.0	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0	< 1.0	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	6600	< 1.0	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0	19000	990	< 1.0
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	20	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	11	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
PAHs							
Naphthalene	DETSC 3304	0.05	ug/l	< 0.50	1.1	1.7	0.07
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.10	0.28	< 0.10	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.10	2.2	0.96	0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.10	0.76	0.42	0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.17	2.4	0.68	0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	0.12	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	0.58	0.44	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.10	1.8	0.51	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.10	0.17	0.20	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.10	0.13	0.16	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	0.28	0.30	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.10	0.11	0.15	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.10	0.22	0.27	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.10	0.16	0.18	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.10	< 0.10	0.16	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.10	0.20	0.28	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 2.00	10	6.6	< 0.20

2378088, 2378089, 2378090, 2378091 - WATER UNKNOWN testing is not accredited

inannronriat

Information in Support of the Analytical Results

Our Ref 24-17001 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

		Date			e container
Lab No	Sample ID ~	Sampled ~	Containers Received	Holding time exceeded for tests	for tests
2378088	SWS1 WATER UNKNOWN	12/08/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2378089	SWS2 WATER UNKNOWN	12/08/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2378090	SWS3 WATER UNKNOWN	12/08/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	
2378091	SWS4 WATER UNKNOWN	12/08/24	GB 1L, GV x2, PB 1L	pH/Cond (1 days)	

Key: G-Glass P-Plastic B-Bottle V-Vial

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Aliphatic C5-C6 Aliphatic C6-C8 Aliphatic C8-C10 Aliphatic C10-C12 Aliphatic C10-C44 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C35 Aliphatic C35-C44 Aromatic C5-C7 Aromatic C7-C8 Aromatic C8-C10 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C44 Aromatic C10-C44 Ali/Aro C10-C44

Acronym HS 1D AL HS_1D_AL HS 1D AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH CU 1D AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

Issued:

30-Aug-24

Certificate Number 24-17569

Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66

Our Reference 24-17569

- Client Reference ~ 24-0640
 - Order No ~ (not supplied)
 - Contract Title ~ Dublin St North Monaghan

Description 12 Soil samples, 12 Leachate prepared by DETS samples.

- Date Received 21-Aug-24
- Date Started 21-Aug-24
- Date Completed 30-Aug-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

	agnan								
			Lab No		2381307	2381308	2381309	2381310	2381311
		Sai	mple ID ~	TP01	TP01	TP02	TP02	TP03	TP03
			Depth ~	0.25	1.00	0.50	2.00	0.25	0.50
			ther ID ~	1	3	2	8	1	2
		-	le Type ~	ES	ES	ES	ES	ES	ES
		-	-	09/08/2024					08/08/2024
		-	ng Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation	1	1		r					
Moisture Content	DETSC 1004	0.1	%	19	18	11	11	6.6	14
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg		7.1	5.5	5.5	6.7	6.1
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg		< 0.2	0.3	0.2	< 0.2	0.3
Cadmium	DETSC 2301#	0.1	mg/kg		0.4	0.2	0.2	< 0.1	0.3
Chromium III	DETSC 2301*	0.15			32	23	24	50	30
Chromium, Hexavalent	DETSC 2204*	1	0, 0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg		25	19	20	33	23
Lead	DETSC 2301#	0.3	mg/kg		14	16	22	15	17
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05	0.16	0.16	< 0.05	0.06
Nickel	DETSC 2301#	1	mg/kg		43	33	34	62	38
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8			29	22	23	34	27
Zinc	DETSC 2301#	1	mg/kg	71	55	46	55	70	64
Inorganics									
pH	DETSC 2008#		pH			8.5	8.5	8.6	8.4
Acid / Alkali Reserve	DETSC 2011*		Oh/100g		< 1.0	1.1	< 1.0	< 1.0	< 1.0
Acid Neutralisation Capacity (pH4)	DETSC 2073*		moles/kg		1.7	3.2	2.6	< 1.0	2.6
Cyanide, Total	DETSC 2130#	0.1	mg/kg		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg		0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg		< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%		1.7	0.4	0.9	0.5	1.2
Chloride	DETSC 2055	1	0, 0		36.9	26.1	23.7	22.1	24.9
Nitrate as NO3	DETSC 2055	1	mg/kg		13	2.5	2.8	3.6	5.1
Sulphide	DETSC 2024*	10	0, 0		< 10	< 10	20	< 10	16
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.07	0.04	0.05	0.04	0.02	0.04
Petroleum Hydrocarbons	DETCO 2224*	0.01		10.01	10.01	10.01	10.01	10.01	10.01
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5				< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg			< 1.20	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg		< 1.50	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4			< 3.40	< 3.40	4.75	< 3.40	8.80
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg		< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg		< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10			< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90

	Lab No		2381306	2381307	2381308	2381309	2381310	2381311	
		Sample ID ~		TP01	TP01	TP02	TP02	TP03	TP03
			Depth ~	0.25	1.00	0.50	2.00	0.25	0.50
		0	ther ID ~	1	3	2	8	1	2
		Sampl	e Type ~	ES	ES	ES	ES	ES	ES
		Samplin	g Date ~	09/08/2024	09/08/2024	09/08/2024	09/08/2024	08/08/2024	08/08/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg		1.25	0.93	0.92	< 0.60	1.15
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg		1.97	4.57	2.31	1.59	3.85
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.23	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.20	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenols			- •						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.4	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

	agnan				r				
			Lab No		2381313	2381314	2381315	2381316	2381317
		Sai	mple ID ~	TP04	TP04	TP06	TP07	TP07	TP07
			Depth ~	0.25	0.50	0.50	0.25	1.00	1.50
			ther ID ~	1	2	2	1	3	8
			le Type ~	ES	ES	ES	ES	ES	ES
		-	ng Date ~					08/08/2024	
		-	ng Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	Method LOD Units							
Preparation									
Moisture Content	DETSC 1004	0.1	%	18	16	9.2	9.3	9.4	11
Metals			1	10	7.0		0.7	5.0	.
Arsenic	DETSC 2301#	0.2	mg/kg		7.2	4.6	9.7	5.9	5.4
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg		0.2	0.2	0.2	0.3	0.2
Cadmium	DETSC 2301#	0.1	mg/kg		0.3	0.3	0.9	0.4	0.3
Chromium III	DETSC 2301*	0.15			24	16	28	25	33
Chromium, Hexavalent	DETSC 2204*	0.2	0, 0		< 1.0	< 1.0	< 1.0	< 1.0 27	< 1.0
Copper	DETSC 2301#	_	mg/kg		25	15	36	65	26
Lead	DETSC 2301#	0.3	mg/kg		16 0.08	11 < 0.05	180 0.42	0.15	39 < 0.05
Mercury Nickel	DETSC 2325#		mg/kg		35	23	36		< 0.05 39
Selenium	DETSC 2301# DETSC 2301#	0.5	mg/kg mg/kg		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium		0.5			24	15	31	28	36
Zinc	DETSC 2301# DETSC 2301#	0.8			61	41	250	28 99	65
Inorganics	DE13C 2501#		l liig/kg	69	01	41	230		
pH	DETSC 2008#		рН	7.9	8.0	8.6	8.1	8.3	8.6
Acid / Alkali Reserve	DETSC 2008#	1	Oh/100g		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Acid Neutralisation Capacity (pH4)	DETSC 2011 DETSC 2073*		moles/kg		< 1.0	4.2	< 1.0	3.5	3.8
Cyanide, Total	DETSC 2073	0.1	mg/kg		0.1	< 0.1	0.4	0.2	0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg		0.1	< 0.1	0.4	0.2	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg		< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.0	%		0.9	0.6	1.4	1.5	0.5
Chloride	DETSC 2002//	1			26.0	57.3	17.7	36.8	29.1
Nitrate as NO3	DETSC 2055	1	mg/kg		3.9	7.1	2.8	4.3	2.4
Sulphide	DETSC 2024*	10			< 10	24	12	< 10	< 10
Sulphate as SO4, Total	DETSC 2321#	0.01	%		0.02	0.04	0.06	0.06	0.04
Petroleum Hydrocarbons	DEIGC ESEIN	0.01	,,,	0.05	0.02	0.01	0.00	0.00	0.01
Aliphatic C5-C6: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS 1D AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH 2D AL	DETSC 3521#	1.5				< 1.50	< 1.50		< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg			< 1.20	< 1.20		< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg		< 1.50	< 1.50	< 1.50		< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4			< 3.40	< 3.40	< 3.40		< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg		< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg		< 3.40	< 3.40	< 3.40		< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10			< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	1	0.9			< 0.90	< 0.90	< 0.90	< 0.90	

	Lab No		2381312	2381313	2381314	2381315	2381316	2381317	
		Sample ID ~		TP04	TP04	TP06	TP07	TP07	TP07
			Depth ~	0.25	0.50	0.50	0.25	1.00	1.50
		0	ther ID ~	1	2	2	1	3	8
		Sampl	e Type ~	ES	ES	ES	ES	ES	ES
		Samplin	g Date ~	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024	08/08/2024
		-	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg		< 0.50	< 0.50	< 0.50		
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg		1.05	0.99	1.79	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg		< 1.40	< 1.40	2.14		1.97
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg		< 0.03	< 0.03	0.08	0.06	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.18	0.17	0.05
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.15	0.15	0.04
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.07	0.07	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.07	0.08	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.08	0.08	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.03	0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.06	0.06	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.03	0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg		< 0.03	< 0.03	0.04	0.04	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10	0.77	0.77	< 0.10
Phenols		· · · · · ·		-					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	0.3	< 0.3	< 0.3	< 0.3	< 0.3

Our Ref 24-17569 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id TP01 3 1.00

Sample Numbers 2381307 2381326 Date Analysed 28/08/2024

Tost Bocults On Wasta	t Results On Waste					
Test Results On Waste				Inert	SNRHW	Hazardous
Determinand and Method Reference	Units	Units Result		Waste	SINKHW	Waste
DETSC 2084# Total Organic Carbon	%	0.8		3	5	6
DETSC 2003# Loss On Ignition	%	4.6		n/a	n/a	10
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH	pH Units	7.8		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	1.7		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate	WAC Limit Values					

	Limit values for LS10 Leachate				
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10:1	LS10	Waste	SINKIIV	Waste
DETSC 2306 Arsenic as As	0.28	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	3	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	0.73	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	0.1	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	1200	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	270	2.7	10	150	500
DETSC 2055 Sulphate as SO4	2000	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	28000	280	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50	500	800	1000
Additional Information		_	TBE -	To Be Evalua	ated
DETSC 2008 pH	7.2		SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	40.1			Hazardous \	Waste
* Temperature*	19.0				
Mass of Sample Kg*	0.120				
Mass of dry Sample Kg*	0.099				
Stage 1					
Volume of Leachant L2*	0.966				
Volume of Eluate VE1*	0.908				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Our Ref 24-17569 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id TP02 2 0.50

Sample Numbers 2381308 2381327 Date Analysed 28/08/2024

est Results On Waste				WAC Limit Values		
						Hazardous
Determinand and Method Reference	Units	Result		Waste	SNRHW	Waste
DETSC 2084# Total Organic Carbon	%	0.5		3	5	6
DETSC 2003# Loss On Ignition	%	2.2		n/a	n/a	10
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH	pH Units	8.5		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	3.2		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE
Test Results On Leachate					AC Limit Va	

Test Results Off Leachate	Limit values for LS10 Leachate				
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
Determinant and Method Reference	10:1	LS10	Waste	SINKIIW	Waste
DETSC 2306 Arsenic as As	0.78	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	5.8	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	0.77	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	< 0.090	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	1500	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	380	3.8	10	150	500
DETSC 2055 Sulphate as SO4	9000	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	52000	520	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50	500	800	1000
Additional Information		_	TBE	- To Be Evalu	ated
DETSC 2008 pH	7.1		SNRHW	- Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	74.8			Hazardous V	Naste
* Temperature*	19.0				
Mass of Sample Kg*	0.110				
Mass of dry Sample Kg*	0.098				
Stage 1					
Volume of Leachant L2*	0.972				
Volume of Eluate VE1*	0.922				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Our Ref 24-17569 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id TP04 1 0.25

Sample Numbers 2381312 2381328 Date Analysed 28/08/2024

Test Results On Waste	W	WAC Limit Values				
Test Results OII waste	Inert	SNRHW	Hazardous			
Determinand and Method Reference	Determinand and Method Reference Units Result					
DETSC 2084# Total Organic Carbon	%	2.0	3	5	6	
DETSC 2003# Loss On Ignition	%	5.0	n/a	n/a	10	
DETSC 3321# BTEX	mg/kg	< 0.04	6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01	1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10	500	n/a	n/a	
DETSC 3301 PAHs	mg/kg	< 1.6	100	n/a	n/a	
DETSC 2008# pH	pH Units	7.9	n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0	n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0	n/a	TBE	TBE	
Tost Posults On Looshoto	WAC Limit Values					

Test Results On Leachate

Test Results On Leachate	WAC Limit Values Limit values for LS10 Leachate				
Test Results On Leachate					
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10:1	LS10	Waste	51411177	Waste
DETSC 2306 Arsenic as As	2.6	0.026	0.5	2	25
DETSC 2306 Barium as Ba	4	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	1.5	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	0.54	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	0.58	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	0.43	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	2.6	0.026	4	50	200
DETSC 2055 Chloride as Cl	1300	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	440	4.4	10	150	500
DETSC 2055 Sulphate as SO4	2200	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	22000	220	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	2200	< 50	500	800	1000
Additional Information			TBE -	To Be Evalu	ated
DETSC 2008 pH	7.2		SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	31.7			Hazardous \	Waste
* Temperature*	19.0				
Mass of Sample Kg*	0.120				
Mass of dry Sample Kg*	0.098				
Stage 1					
Volume of Leachant L2*	0.961				
Volume of Eluate VE1*	0.91				

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Our Ref 24-17569 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id TP06 2 0.50

Sample Numbers 2381314 2381329 Date Analysed 28/08/2024

est Results On Waste					WAC Limit Values		
est nesults off waste					SNRHW	Hazardous	
Determinand and Method Reference	eterminand and Method Reference Units Result						
DETSC 2084# Total Organic Carbon	%	1.2		3	5	6	
DETSC 2003# Loss On Ignition	%	1.4		n/a	n/a	10	
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a	
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a	
DETSC 2008# pH	pH Units	8.6		n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	4.2		n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE	
					WAC Limit Values		

Test Results On Leachate

Test Results On Leachate	WAC Limit Values				
			Limit values for LS10 Leachate		
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10:1	LS10	Waste	511111	Waste
DETSC 2306 Arsenic as As	0.59	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	4.9	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	0.99	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	0.12	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	1400	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	360	3.6	10	150	500
DETSC 2055 Sulphate as SO4	2500	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	39000	390	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50	500	800	1000
Additional Information			TBE -	To Be Evalu	ated
DETSC 2008 pH	7.1	7	SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	56.2			Hazardous \	Naste
* Temperature*	19.0				
Mass of Sample Kg*	0.110				
Mass of dry Sample Kg*	0.100				
Stage 1					
Volume of Leachant L2*	0.989				
Volume of Eluate VE1*	0.941				

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

contract ritle Dublin St North Mol	ing		Lab No	2381318	2381319	2381320	2381321	2381322	2381323
		San	nple ID ~	TP01	TP02	TP02	TP03	TP04	TP06
		541	Depth ~	0.25	0.50	2.00	0.50	0.25	0.50
		0	ther ID ~	1	2	2.00	2	1	2
			e Type ~	ES		ES	ES	ES	ES
		-						08/08/2024	
		-	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	,-	1-		1-	7-	, -
Preparation									
BS EN 12457 10:1	DETSC 1009*			Y	Y	Y	Y	Y	Y
Metals	1							1	
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.25	< 0.16	0.21	0.25	1.4	0.43
Boron, Dissolved	DETSC 2306*	0.012	mg/l	0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Calcium, Dissolved	DETSC 2306	0.09	mg/l	2.9	7.8	7.1	7.4	2.4	8.9
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.9	0.6	0.6	0.7	2.2	0.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.19	< 0.09	< 0.09	< 0.09	3.5	< 0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	< 0.6	< 0.6	< 0.6	2.0	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.6	< 1.3	< 1.3	< 1.3	2.7	< 1.3
Inorganics									
Conductivity	DETSC 2009	1	uS/cm	24.6	66.4	51.5	39.5	28.3	56.9
рН	DETSC 2008		рН	7.7	7.3	7.4	7.3	7.3	7.1
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	< 0.0015	0.0024	0.0024	0.0021	0.0021	< 0.0015
Thiocyanate	DETSC 2130	20	ug/l	23	24	33	26	30	32
Dissolved Organic Carbon	DETSC 2085	2	mg/l	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	8.12	22.4	19.8	20.6	7.14	23.9
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
Sulphate as SO4	DETSC 2055	0.1	mg/l	2.1	8.8	3.3	3.9	1.7	2.3
Sulphide	DETSC 2208	0.01	mg/l		< 0.01	< 0.01	< 0.01	< 0.01	0.01
Sulphur as S, Total	DETSC 2320*	10	mg/l	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons									
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

	Lab No			2381318	2381319	2381320	2381321	2381322	2381323
		San	nple ID ~	TP01	TP02	TP02	TP03	TP04	TP06
			Depth ~	0.25	0.50	2.00	0.50	0.25	0.50
		0	ther ID ~	1	2	8	2	1	2
			е Туре ~	ES	ES	ES	ES	ES	ES
		Samplin	g Date ~	09/08/2024	09/08/2024	09/08/2024	08/08/2024	08/08/2024	08/08/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE	DETSC 3322	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAHs									
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	0.01	0.02	0.02	0.02
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.03	0.01	0.03	0.01	0.02	0.02
Pyrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

	0		Lab No	2381324	2381325
		San	nple ID ~	TP07	TP07
			Depth ~	1.00	1.50
		O	ther ID ~	3	8
		Sampl	e Type ~	ES	ES
		-	g Date ~	08/08/2024	08/08/2024
		-	g Time ~	n/s	n/s
Test	Method	LOD	Units		
Preparation					
BS EN 12457 10:1	DETSC 1009*			Y	Y
Metals					
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.73	0.63
Boron, Dissolved	DETSC 2306*	0.012	mg/l	< 0.012	< 0.012
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03
Calcium, Dissolved	DETSC 2306	0.09	mg/l	5.9	7.0
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.1	0.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.38	0.10
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	1.0	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.2	< 1.3
Inorganics					
Conductivity	DETSC 2009	1	uS/cm	42.9	48.3
pH	DETSC 2008		рH	7.2	7.2
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l	< 0.0001	< 0.0001
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	< 0.0001	< 0.0001
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	< 0.0015	0.0021
Thiocyanate	DETSC 2130	20	ug/l	26	31
Dissolved Organic Carbon	DETSC 2085	2	mg/l	< 2.0	< 2.0
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	16.3	18.9
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015
Sulphate as SO4	DETSC 2055	0.1	mg/l	2.3	2.8
Sulphide	DETSC 2208	0.01	mg/l	< 0.01	0.04
Sulphur as S, Total	DETSC 2320*	10	mg/l	< 10	< 10
Petroleum Hydrocarbons		· · ·			
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1

Our Ref 24-17569 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

			Lab No	2381324	2381325
		San	nple ID ~	TP07	TP07
			Depth ~	1.00	1.50
		0	ther ID ~	3	8
		Sampl	e Type ~	ES	ES
		Samplin	g Date ~	08/08/2024	08/08/2024
		Samplin	g Time ~	n/s	n/s
Test	Method	LOD	Units		
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0	< 1.0
PAHs					
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	0.02
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20

r

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 24-17569 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2381306	TP01 1 0.25	SOIL	NAD	none	Jason Barsby
2381307	TP01 3 1.00	SOIL	NAD	none	Jason Barsby
2381308	TP02 2 0.50	SOIL	NAD	none	Jason Barsby
2381309	TP02 8 2.00	SOIL	NAD	none	Jason Barsby
2381310	TP03 1 0.25	SOIL	NAD	none	Jason Barsby
2381311	TP03 2 0.50	SOIL	NAD	none	Jason Barsby
2381312	TP04 1 0.25	SOIL	NAD	none	Jason Barsby
2381313	TP04 2 0.50	SOIL	NAD	none	Jason Barsby
2381314	TP06 2 0.50	SOIL	NAD	none	Jason Barsby
2381315	TP07 1 0.25	SOIL	NAD	none	Jason Barsby
2381316	TP07 3 1.00	SOIL	Amosite	Amosite present as fibre bundles	Jason Barsby
2381317	TP07 8 1.50	SOIL	NAD	none	Jason Barsby

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 24-17569 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

		Date			Inappropria e container
Lab No Sample ID ~ 2381306 TP01 0.25 SOIL		Sampled ~	Containers Received	Holding time exceeded for tests	for tests
2381306	TP01 0.25 SOIL	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381307	TP01 1.00 SOIL	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381308	TP02 0.50 SOIL	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381309	TP02 2.00 SOIL	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381310	TP03 0.25 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381311	TP03 0.50 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381312	TP04 0.25 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381313	TP04 0.50 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381314	TP06 0.50 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381315	TP07 0.25 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381316	TP07 1.00 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381317	TP07 1.50 SOIL	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2381318	TP01 0.25 LEACHATE	09/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381319	TP02 0.50 LEACHATE	09/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381320	TP02 2.00 LEACHATE	09/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381321	TP03 0.50 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381322	TP04 0.25 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381323	TP06 0.50 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
				Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	
2381324	TP07 1.00 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
			,,,	Hexavalent (4 days), Hardness (7 days), Kone (4	
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
				Ammoniacal Nitrogen as N (10 days), PAH MS (4	
				days)	

Information in Support of the Analytical Results

Our Ref 24-17569 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

	Date			
	=			e container
Sample ID ~	Sampled ~	Containers Received	Holding time exceeded for tests	for tests
TP07 1.50 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,	
			Hexavalent (4 days), Hardness (7 days), Kone (4	
			days), Kone (Sulphide) (5 days), pH/Cond (1 days),	
			Ammoniacal Nitrogen as N (10 days), PAH MS (4	
			days)	
TP01 1.00 LEACHATE	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH/Cond (1 days)	
TP02 0.50 LEACHATE	09/08/24	GJ 250ml, GJ 60ml, PT 1L	pH/Cond (1 days)	
TP04 0.25 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH/Cond (1 days)	
TP06 0.50 LEACHATE	08/08/24	GJ 250ml, GJ 60ml, PT 1L	pH/Cond (1 days)	
	TP07 1.50 LEACHATE TP01 1.00 LEACHATE TP02 0.50 LEACHATE TP04 0.25 LEACHATE	TP07 1.50 LEACHATE 08/08/24 TP01 1.00 LEACHATE 09/08/24 TP02 0.50 LEACHATE 09/08/24 TP04 0.25 LEACHATE 08/08/24	TP07 1.50 LEACHATE 08/08/24 GJ 250ml, GJ 60ml, PT 1L TP01 1.00 LEACHATE 09/08/24 GJ 250ml, GJ 60ml, PT 1L TP02 0.50 LEACHATE 09/08/24 GJ 250ml, GJ 60ml, PT 1L TP04 0.25 LEACHATE 09/08/24 GJ 250ml, GJ 60ml, PT 1L	TP07 1.50 LEACHATE08/08/24GJ 250ml, GJ 60ml, PT 1LAliphatics/Aromatics (4 days), Chromium, Hexavalent (4 days), Hardness (7 days), Kone (4 days), Kone (Sulphide) (5 days), pH/Cond (1 days), Ammoniacal Nitrogen as N (10 days), PAH MS (4 days)TP01 1.00 LEACHATE09/08/24GJ 250ml, GJ 60ml, PT 1LpH/Cond (1 days)TP02 0.50 LEACHATE09/08/24GJ 250ml, GJ 60ml, PT 1LpH/Cond (1 days)TP04 0.25 LEACHATE08/08/24GJ 250ml, GJ 60ml, PT 1LpH/Cond (1 days)TP04 0.25 LEACHATE08/08/24GJ 250ml, GJ 60ml, PT 1LpH/Cond (1 days)

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

HSHeadspace analysisEHExtractable Hydrocarbons - i.e. everything extracted by the solventCUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	Acronym	Description
CUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	HS	Headspace analysis
1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
2D GC-GC - Double coil gas chromatography	CU	Clean-up - e.g. by florisil, silica gel
	1D	GC - Single coil gas chromatography
	2D	GC-GC - Double coil gas chromatography
Total Aliphatics & Aromatics	Total	Aliphatics & Aromatics
AL Aliphatics only	AL	Aliphatics only
AR Aromatics only	AR	Aromatics only
#1 EH_2D_Total but with humics mathematically subtracted	#1	EH_2D_Total but with humics mathematically subtracted
#2 EH_2D_Total but with fatty acids mathematically subtracted	#2	EH_2D_Total but with fatty acids mathematically subtracted
_ Operator - underscore to separate acronyms (exception for +)	_	Operator - underscore to separate acronyms (exception for +)
+ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total	+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
ТРН (С10-С40)	EH_1D_Total
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL

Aliphatic C35-C44 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C44 Aromatic C10-C44 Ali/Aro C10-C44 EH_CU_1D_AL EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

Issued:

29-Aug-24

Certificate Number 24-17570

Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66

Our Reference 24-17570

- Client Reference ~ 24-0640
 - Order No ~ (not supplied)

Contract Title ~ Dublin St North Monaghan

Description 5 Soil samples, 2 Leachate prepared by DETS samples.

- Date Received 21-Aug-24
- Date Started 21-Aug-24
- Date Completed 29-Aug-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

Contract Intie ¹² Dublin St North Wor	lagilali			r			1	
		-	Lab No			2381332	2381333	2381334
		Sai	nple ID ~	TP05	TP05	TP08	TP09	TP010
		_	Depth ~	0.50		0.50	0.50	0.50
			ther ID ~	1	2	1	1	1
			le Type ~	ES		ES	ES	ES
		-	-		13/08/2024			
Test		-	ng Time ~	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Preparation Moisture Content	DETSC 1004	0.1	%	9.1	14	15	24	17
Moisture content	DE13C 1004	0.1	70	9.1	14	15	24	1/
Arsenic	DETSC 2301#	0.2	malka	11	9.5	8.2	7.2	35
Boron, Water Soluble (2.5:1)		0.2	<u> </u>			0.5	1.0	0.6
Cadmium	DETSC 2311# DETSC 2301#	0.2	0, 0	0.8		0.3	0.5	0.8
Chromium III	DETSC 2301#	0.15				28	24	43
Chromium, Hexavalent	DETSC 2301*	0.13			< 1.0	< 1.0	< 1.0	1.5
Copper	DETSC 2204	0.2				38	41	1.5
Lead	DETSC 2301#	0.2	0, 0			110	41	300
Mercury	DETSC 2301#	0.05				0.27	0.28	0.68
Nickel	DETSC 2323#	0.05				35	27	66
Selenium	DETSC 2301#	0.5				< 0.5	0.6	< 0.5
Vanadium	DETSC 2301#	0.8				29	26	70
Zinc	DETSC 2301#	0.0				100	85	330
Inorganics	DE13C 2301#		116/16	120	05	100	05	550
pH	DETSC 2008#		pН	8.7	10.0	8.2	8.0	9.7
Acid / Alkali Reserve	DETSC 2011*	1	Oh/100g	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Acid Neutralisation Capacity (pH4)	DETSC 2073*		moles/kg		1.6	1.6	1.6	1.8
Cyanide, Total	DETSC 2130#	0.1				0.2	0.3	1.5
Cyanide, Free	DETSC 2130#	0.1				0.2	0.4	0.3
Thiocyanate	DETSC 2130#	0.6		1.8		0.6	2.5	2.1
Organic matter	DETSC 2002#	0.1				1.7	4.5	6.3
Chloride	DETSC 2055	1	mg/kg	30.8	60.7	29.0	26.4	32.7
Nitrate as NO3	DETSC 2055	1	mg/kg		79	25	13	66
Sulphide	DETSC 2024*	10			24	< 10	20	24
Sulphate as SO4, Total	DETSC 2321#	0.01			0.08	0.06	0.10	0.12
Petroleum Hydrocarbons			•					
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	4.61	< 3.40	< 3.40	11.44
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	4.32
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	15.76
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01			< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9				< 0.90	< 0.90	< 0.90

			Lab No	2381330	2381331	2381332	2381333	2381334
		San	nple ID ~	TP05	TP05	TP08	TP09	TP010
			Depth ~	0.50	1.00	0.50	0.50	0.50
			ther ID ~	1	2	1	1	1
		Sampl	e Type ~	ES	ES	ES	ES	ES
		-	g Date ~	13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
			g Time ~	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	0.80	< 0.50	
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	0.98	< 0.60	2.76	< 0.60	1.52
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	5.39	2.09	2.96	1.95	31.53
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	33.04
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00	48.80
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs								
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.16	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	0.15	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.11	< 0.03	0.76	< 0.03	0.08
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	0.20	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.20	< 0.03	0.53	0.05	0.23
Pyrene	DETSC 3303#	0.03	mg/kg	0.16	< 0.03	0.39	0.04	0.19
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.07	< 0.03	0.10	< 0.03	0.10
Chrysene	DETSC 3303	0.03	mg/kg	0.09	< 0.03	0.09	< 0.03	0.11
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.08	< 0.03	0.05	< 0.03	0.11
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03	0.05
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	0.04	< 0.03	0.07
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.04
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03	0.04
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.84	< 0.10	2.4	< 0.10	1.0
Phenols		· · · · ·						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	0.5	0.6

Summary of Chemical Analysis Leachate Samples

	0		Lab No	2381335
		San	nple ID ~	TP05
		Jan	Depth ~	0.50
		0	ther ID ~	
				1
		-	e Type ~	ES
		-	-	13/08/2024
Test	N A a a b	-	g Time ~	n/s
Test	Method	LOD	Units	
Preparation		1 1		
BS EN 12457 10:1	DETSC 1009*			Y
Metals		0.16	4	0.75
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.75
Boron, Dissolved	DETSC 2306*	0.012	mg/l	< 0.012
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Calcium, Dissolved	DETSC 2306	0.09	mg/l	9.4
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.2
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.23
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.4
Inorganics				
Conductivity	DETSC 2009	1	uS/cm	74.0
рН	DETSC 2008		pН	7.1
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l	< 0.0001
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	< 0.0001
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	< 0.0015
Thiocyanate	DETSC 2130	20	ug/l	< 20
Dissolved Organic Carbon	DETSC 2085	2	mg/l	< 2.0
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	26.9
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015
Sulphate as SO4	DETSC 2055	0.1	mg/l	15
Sulphide	DETSC 2208	0.01	mg/l	0.06
Sulphur as S, Total	DETSC 2320*	10	mg/l	
Petroleum Hydrocarbons		1 1	0,	
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aromatic C5-C7: HS 1D AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C8-C10: HS 1D AR	DETSC 3322 DETSC 3322	0.1	ug/l	< 0.1
	DL13C 3322	0.1	ug/I	< U.1

	-		Lab No	2381335
		San	nple ID ~	TP05
			Depth ~	0.50
		0	ther ID ~	1
		Sampl	e Type ~	ES
		Samplin	g Date ~	13/08/2024
		Samplin	g Time ~	n/s
Test	Method	LOD	Units	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0
Benzene	DETSC 3322	1	ug/l	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0
МТВЕ	DETSC 3322	1	ug/l	< 1.0
PAHs				
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.02
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

Our Ref 24-17570 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id TP010 1 0.50

Sample Numbers 2381334 2381336 Date Analysed 29/08/2024

Fest Results On Waste					WAC Limit Values		
					SNRHW	Hazardous	
Determinand and Method Reference	Units	Result		Waste	SINKITIV	Waste	
DETSC 2084# Total Organic Carbon	%	8.0		3	5	6	
DETSC 2003# Loss On Ignition	%	11.0		n/a	n/a	10	
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	60.0		500	n/a	n/a	
DETSC 3301 PAHs	mg/kg	4.3		100	n/a	n/a	
DETSC 2008# pH	pH Units	9.7		n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	1.8		n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE	
Test Results On Leachate				WAC Limit Values			

Test Results On Leachate	Limit values for LS10 Leachate					
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous	
Determinant and Method Reference	10:1	LS10	Waste	51411177	Waste	
DETSC 2306 Arsenic as As	2.5	0.025	0.5	2	25	
DETSC 2306 Barium as Ba	15	0.15	20	100	300	
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5	
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70	
DETSC 2306 Copper as Cu	1.7	< 0.02	2	50	100	
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2	
DETSC 2306 Molybdenum as Mo	1.1	< 0.1	0.5	10	30	
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40	
DETSC 2306 Lead as Pb	0.69	< 0.05	0.5	10	50	
DETSC 2306 Antimony as Sb	1.4	< 0.05	0.06	0.7	5	
DETSC 2306 Selenium as Se	0.4	< 0.03	0.1	0.5	7	
DETSC 2306 Zinc as Zn	2.3	0.023	4	50	200	
DETSC 2055 Chloride as Cl	1300	< 100	800	15,000	25,000	
DETSC 2055* Fluoride as F	430	4.3	10	150	500	
DETSC 2055 Sulphate as SO4	8700	< 100	1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	43000	430	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	2100	< 50	500	800	1000	
Additional Information		_	TBE -	To Be Evalua	ated	
DETSC 2008 pH	7.1	1	SNRHW -	Stable Non-	Reactive	
DETSC 2009 Conductivity uS/cm	60.8			Hazardous \	Vaste	
* Temperature*	19.0					
Mass of Sample Kg*	0.120					
Mass of dry Sample Kg*	0.100					
Stage 1	_					
Volume of Leachant L2*	0.978					
Volume of Eluate VE1*	0.918					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 24-17570 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2381330	TP05 1 0.50	SOIL	Chrysotile	Chrysotile present as fibre bundles	Andrew Graham
2381331	TP05 2 1.00	SOIL	NAD	none	Andrew Graham
2381332	TP08 1 0.50	SOIL	NAD	none	Andrew Graham
2381333	TP09 1 0.50	SOIL	NAD	none	Andrew Graham
2381334	TP010 1 0.50	SOIL	NAD	none	Andrew Graham

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 24-17570 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

		Date			Inappropriat e container		
Lab No Sample ID ~		Sampled ~ Containers Received Holding time exceeded for tests					
2381330	TP05 0.50 SOIL	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)			
2381331	TP05 1.00 SOIL	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)			
2381332	TP08 0.50 SOIL	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)			
2381333	TP09 0.50 SOIL	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)			
2381334	TP010 0.50 SOIL	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)			
2381335	TP05 0.50 LEACHATE	13/08/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), Chromium,			
				Hexavalent (4 days), Hardness (7 days), Kone (4			
				days), Kone (Sulphide) (5 days), pH/Cond (1 days),			
				PAH MS (4 days)			
2381336	TP010 0.50 LEACHATE	13/08/24	GJ 250ml, GJ 60ml, PT 1L	pH/Cond (1 days)			

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

HSHeadspace analysisEHExtractable Hydrocarbons - i.e. everything extracted by the solventCUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	Acronym	Description
CUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	HS	Headspace analysis
1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatography	EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
2D GC-GC - Double coil gas chromatography	CU	Clean-up - e.g. by florisil, silica gel
	1D	GC - Single coil gas chromatography
	2D	GC-GC - Double coil gas chromatography
Total Aliphatics & Aromatics	Total	Aliphatics & Aromatics
AL Aliphatics only	AL	Aliphatics only
AR Aromatics only	AR	Aromatics only
#1 EH_2D_Total but with humics mathematically subtracted	#1	EH_2D_Total but with humics mathematically subtracted
#2 EH_2D_Total but with fatty acids mathematically subtracted	#2	EH_2D_Total but with fatty acids mathematically subtracted
_ Operator - underscore to separate acronyms (exception for +)	_	Operator - underscore to separate acronyms (exception for +)
+ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total	+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
ТРН (С10-С40)	EH_1D_Total
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL

Aliphatic C35-C44 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C44 Aromatic C10-C44 Ali/Aro C10-C44 EH_CU_1D_AL EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

Issued:

10-Sep-24

- Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66
- Our Reference 24-18647

Certificate Number 24-18647

- *Client Reference* ~ 24-0640
 - Order No ~ (not supplied)
 - *Contract Title* ~ Dublin St North Monaghan

Description 3 Soil samples, 2 Leachate prepared by DETS samples.

- Date Received 04-Sep-24
- Date Started 04-Sep-24
- Date Completed 10-Sep-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 24-18647 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

<i>Lab</i> No 2387708 2387709 2387710							
		6					
		Sai	nple ID ~		BH02	BH02	
			Depth ~		0.50	1.00	
			ther ID ~		1	2	
			le Type ~		ES	ES	
		-	-	30/07/2024	31/07/2024	31/07/2024	
- .		-	ng Time ~		n/s	n/s	
Test	Method	LOD	Units				
Preparation		0.1			10		
Moisture Content	DETSC 1004	0.1	%	17	10	9.8	
Metals			4				
Arsenic	DETSC 2301#	0.2					
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg				
Cadmium	DETSC 2301#	0.1	mg/kg		-		
Chromium III	DETSC 2301*	0.15	mg/kg				
Chromium, Hexavalent	DETSC 2204*	1	mg/kg				
Copper	DETSC 2301#	0.2	mg/kg				
Lead	DETSC 2301#	0.3	mg/kg				
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05		
Nickel	DETSC 2301#	1	mg/kg				
Selenium	DETSC 2301#	0.5					
Vanadium	DETSC 2301#	0.8	mg/kg		-		
Zinc	DETSC 2301#	1	mg/kg	94	69	46	
Inorganics	1		1		1		
рН	DETSC 2008#		pН				
Acid / Alkali Reserve	DETSC 2011*		Oh/100g				
Acid Neutralisation Capacity (pH4)	DETSC 2073*		moles/kg		< 1.0		
Cyanide, Total	DETSC 2130#	0.1	mg/kg				
Cyanide, Free	DETSC 2130#	0.1	0, 0				
Thiocyanate	DETSC 2130#	0.6	mg/kg		< 0.6		
Organic matter	DETSC 2002#	0.1	%		0.2		
Chloride	DETSC 2055	1	mg/kg		32.6		
Nitrate as NO3	DETSC 2055	1	mg/kg		20		
Sulphide	DETSC 2024*	10	mg/kg				
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.04	0.06	0.05	
Petroleum Hydrocarbons	1	1		i	1	1	
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	0, 0			-	
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg				
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg				
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5				< 1.50	
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2			< 1.20	< 1.20	
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40	< 3.40	
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg				
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg		< 10.00	< 10.00	
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	

Summary of Chemical Analysis Soil Samples

Our Ref 24-18647 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

	•		Lab No	2387708	2387709	2387710
		Sam	ple ID ~	BH01	BH02	BH02
			Depth ~	0.50	0.50	1.00
		Ot	her ID ~	1	1	2
		Sample	e Type ~	ES	ES	ES
		Samplin	g Date ~	30/07/2024	31/07/2024	31/07/2024
		Sampling	g Time ~	n/s	n/s	n/s
Test	Method	LOD	Units			
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	1.73	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	6.29	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01
PAHs						
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg			
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.11	< 0.10	< 0.10
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 24-18647 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2387708	BH01 1 0.50	SOIL	NAD	none	Ben Rose
2387709	BH02 1 0.50	SOIL	NAD	none	Ben Rose
2387710	BH02 2 1.00	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 24-18647 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id BH01 1 0.50

Sample Numbers 2387708 2387711 Date Analysed 10/09/2024

Test Results On Waste					WAC Limit Values		
Test Results OII waste	Inert	SNRHW	Hazardous				
Determinand and Method Reference Units		Result	Result	Waste	SINKITIV	Waste	
DETSC 2084# Total Organic Carbon	%	1.9		3	5	6	
DETSC 2003# Loss On Ignition	%	5.1		n/a	n/a	10	
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a	
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a	
DETSC 2008# pH	pH Units	7.7		n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0		n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE	
Test Results On Leachate					AC Limit Va		

Test Results On Leachate	Limit va	lues for LS1	0 Leachate		
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
Determinant and Method Reference	10:1	LS10	Waste	SINKIIV	Waste
DETSC 2306 Arsenic as As	0.4	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	7.3	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	1.3	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	0.34	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	960	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	270	2.7	10	150	500
DETSC 2055 Sulphate as SO4	2000	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	21000	210	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	2100	< 50	500	800	1000
Additional Information		_	TBE -	To Be Evalu	ated
DETSC 2008 pH	6.8		SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	29.5			Hazardous \	Waste
* Temperature*	19.0				
Mass of Sample Kg*	0.120				
Mass of dry Sample Kg*	0.100				
Stage 1					
Volume of Leachant L2*	0.98				
Volume of Eluate VE1*	0.932				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 24-18647 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id BH02 1 0.50

Sample Numbers 2387709 2387712 Date Analysed 10/09/2024

Test Results On Waste					WAC Limit Values		
Test Results Off Waste	Inert	SNRHW	Hazardous				
Determinand and Method Reference	Units	Result		Waste	SINKERV	Waste	
DETSC 2084# Total Organic Carbon	%	1.8		3	5	6	
DETSC 2003# Loss On Ignition	%	2.1		n/a	n/a	10	
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a	
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a	
DETSC 2008# pH	pH Units	8.8		n/a	>6	n/a	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1.0		n/a	TBE	TBE	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0		n/a	TBE	TBE	
Test Results On Leachate					AC Limit Va		

Test Results Off Leachate		Limit va	lues for LS1	0 Leachate	
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10:1	LS10	Waste	SINKIIW	Waste
DETSC 2306 Arsenic as As	0.65	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	6.2	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	0.41	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	1.1	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	< 0.090	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	0.36	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	1400	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	230	2.3	10	150	500
DETSC 2055 Sulphate as SO4	4800	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	46000	460	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50	500	800	1000
Additional Information		_	TBE ·	To Be Evalu	ated
DETSC 2008 pH	6.7		SNRHW ·	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	66.3			Hazardous \	Waste
* Temperature*	19.0				
Mass of Sample Kg*	0.110				
Mass of dry Sample Kg*	0.099				
Stage 1					
Volume of Leachant L2*	0.978				
Volume of Eluate VE1*	0.923				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Our Ref 24-18647 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

ab No	Sample ID ~	Date Sampled ~	Containers Received	Holding time avcoaded for tests	Inappropri e containe for tests
	<u>Sample ID ~</u> 708 BH01 0.50 SOIL		GJ 250ml, GJ 60ml, PT 1L	Holding time exceeded for tests BTEX / C5-C10 (14 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Anions (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), Organic Matter (Manual) (28 days), PAH FID (14 days), PAH MS (14 days), PCB (30 days), PH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
23877	709 BH02 0.50 SOIL	31/07/2024	GJ 250ml, GJ 60ml, PT 1L	BTEX / C5-C10 (14 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Anions (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), Organic Matter (Manual) (28 days), PAH FID (14 days), PAH MS (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	
23877	710 BH02 1.00 SOIL	31/07/2024	GJ 250ml, GJ 60ml, PT 1L	BTEX / C5-C10 (14 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Anions (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Manual) (28 days), PAH MS (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days)	
23877	711 BH01 0.50 LEACHATE	30/07/2024	GJ 250ml, GJ 60ml, PT 1L	Conductivity (non reportable) (28 days), Conductivity uS/cm (28 days), Anions (28 days), pH/Cond (1 days), Phenol Index (30 days), Cyanide/Mono pHoh (14 days), Total Dissolved s (28 days), TOC AN (28 days)	
23877	712 BH02 0.50 LEACHATE	31/07/2024	GJ 250ml, GJ 60ml, PT 1L	Conductivity (non reportable) (28 days), Conductivity uS/cm (28 days), Anions (28 days), pH/Cond (1 days), Phenol Index (30 days), Cyanide/Mono pHoh (14 days), Total Dissolved s (28 days), TOC AN (28 days)	

Our Ref 24-18647 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
ТРН (С10-С40)	EH_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

Issued:

Certificate Number 24-18649

Client Causeway Geotech Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan Co. Dublin K32 VR66

Our Reference 24-18649

- Client Reference ~ 24-0640
 - Order No ~ (not supplied)

Contract Title ~ Dublin St North Monaghan

Description 2 Soil samples, 2 Leachate prepared by DETS samples.

- Date Received 04-Sep-24
- Date Started 04-Sep-24
- Date Completed 11-Sep-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

11-Sep-24

Summary of Chemical Analysis Soil Samples

Our Ref 24-18649 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

	lagnan		Lab No	2387714	2387715
		Sample ID ~		BH03	BH03
			Depth ~	0.50	1.00
		O	ther ID ~	10	11
		Samp	le Type ~	ES	ES
		-	ng Date ~	29/07/2024	29/07/2024
		Samplir	ng Time ~	n/s	n/s
Test	Method	LOD	Units		
Preparation					
Moisture Content	DETSC 1004	0.1	%	11	13
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	3.9	4.5
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.4	0.3
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.2
Chromium III	DETSC 2301*	0.15	mg/kg	29	33
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	26	28
Lead	DETSC 2301#	0.3	mg/kg	11	27
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	38	43
Selenium	DETSC 2301#	0.5		< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	26	28
Zinc	DETSC 2301#	1	mg/kg	58	61
Inorganics		•			
рН	DETSC 2008#		pН	8.3	8.9
Acid / Alkali Reserve	DETSC 2011*	1	Oh/100g	12	< 1.0
Acid Neutralisation Capacity (pH4)	DETSC 2073*	1	moles/kg	4.0	< 1.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	3.4	0.5
Chloride	DETSC 2055	1	mg/kg	27.5	34.3
Nitrate as NO3	DETSC 2055	1	mg/kg	1.2	3.9
Sulphide	DETSC 2024*	10	mg/kg	44	40
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.05	0.05
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521*	3.4	mg/kg	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4		< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01			< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg		< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90

Summary of Chemical Analysis Soil Samples

Our Ref 24-18649 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

	Lab No			2387714	2387715
		San	nple ID ~	BH03	BH03
			Depth ~	0.50	1.00
		0	ther ID ~	10	11
		Sampl	e Type ~	ES	ES
		Samplin	g Date ~	29/07/2024	29/07/2024
		Samplin	g Time ~	n/s	n/s
Test	Method	LOD	Units		
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
MTBE	DETSC 3321	0.01	mg/kg	< 0.01	< 0.01
PAHs					
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3

WASTE ACCEPTANCE CRITERIA TESTING **ANALYTICAL REPORT**

Our Ref 24-18649 Client Ref 24-0640 Contract Title Dublin St North Monaghan Sample Id BH03 10 0.50

Sample Numbers 2387714 2387717 Date Analysed 10/09/2024

Test Results On Waste	WAC Limit Values					
Test Results On Waste	Ιſ	Inert	SNRHW	Hazardous		
Determinand and Method Reference	Units	Result		Waste	SINKITIV	Waste
DETSC 2084# Total Organic Carbon	%	0.8	7 F	3	5	6
DETSC 2003# Loss On Ignition	%	3.2		n/a	n/a	10
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total	mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a
DETSC 2008# pH	pH Units	8.3		n/a	>6	n/a
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	4.0		n/a	TBE	TBE
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1.0	╵╵	n/a	TBE	TBE
Test Results On Leachate					AC Limit Va	lues

lest	Results	On	Leachate	

Test Results On Leachate	WAC Limit Values Limit values for LS10 Leachate				
Test Results On Leachate					
Determinand and Method Reference	Conc in Eluate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10:1	LS10	Waste	JININITV	Waste
DETSC 2306 Arsenic as As	0.56	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba	4.6	< 0.1	20	100	300
DETSC 2306 Cadmium as Cd	< 0.030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	< 0.25	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	0.77	< 0.02	2	50	100
DETSC 2306 Mercury as Hg	< 0.010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< 1.1	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	< 0.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	< 0.090	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	< 0.17	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	< 0.25	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	< 1.3	< 0.01	4	50	200
DETSC 2055 Chloride as Cl	800	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	130	1.3	10	150	500
DETSC 2055 Sulphate as SO4	1500	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	32000	320	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2000	< 50	500	800	1000
Additional Information		_	TBE -	• To Be Evalu	ated
DETSC 2008 pH	6.7		SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	45.6			Hazardous \	Naste
* Temperature*	19.0				
Mass of Sample Kg*	0.110				
Mass of dry Sample Kg*	0.098				
Stage 1					
Volume of Leachant L2*	0.966				
Volume of Eluate VE1*	0.909				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Chemical Analysis Leachate Samples

Our Ref 24-18649 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

Contract Inte Dubin St North Me			Lab No	2387716	2387717
		San	nple ID ~	BH03	BH03
		Juli	Depth ~	0.50	0.50
		0	ther ID ~	10	10
			e Type ~	ES	ES
		-	g Date ~	29/07/2024	
		-	g Time ~	23/07/2024 n/s	23/07/2024 n/s
Test	Method	LOD	Units	11/3	11/3
Preparation	Methoa	100	Onits		
BS EN 12457 10:1	DETSC 1009*			Y	
BS EN 12457 10:1	DETSC 1009*			•	Y
Metals	DL13C 1009				I
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.24	
Boron, Dissolved	DETSC 2306*	0.10	ug/l	< 0.012	
Cadmium, Dissolved	DETSC 2306	0.012	mg/l	< 0.012	
Calcium, Dissolved	DETSC 2306 DETSC 2306	0.03	ug/l	7.9	
			mg/l	< 1.0	
Chromium III, Dissolved	DETSC 2306*	1	ug/l		
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.8	
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09	
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3	
Inorganics					
Conductivity	DETSC 2009	1	uS/cm	48.2	
pH	DETSC 2008		рH		
Cyanide, Total Low Level	DETSC 2131	0.0001	mg/l		
Cyanide, Free Low Level	DETSC 2131	0.0001	mg/l	< 0.0001	
Phenol - Monohydric Low Level	DETSC 2131	0.0015	mg/l	< 0.0015	
Thiocyanate	DETSC 2130	20	ug/l	< 20	
Dissolved Organic Carbon	DETSC 2085	2	mg/l	< 2.0	
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	21.8	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	2.0	
Sulphate as SO4	DETSC 2055	0.1	mg/l		
Sulphide	DETSC 2208	0.01	mg/l	< 0.01	
Sulphur as S, Total	DETSC 2320*	10	mg/l	< 10	
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	
Aromatic C7-C8: HS 1D AR	DETSC 3322	0.1	ug/l	< 0.1	

r

Summary of Chemical Analysis Leachate Samples

Our Ref 24-18649 Client Ref ~ 24-0640 Contract Title ~ Dublin St North Monaghan

			Lab No	2387716	2387717
		Sam	nple ID ~	BH03	BH03
			Depth ~	0.50	0.50
		Ot	ther ID ~	10	10
		Sampl	e Type ~	ES	ES
		Samplin	g Date ~	29/07/2024	29/07/2024
		Samplin	g Time ~	n/s	n/s
Test	Method	LOD	Units		
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0	
Benzene	DETSC 3322	1	ug/l	< 1.0	
Toluene	DETSC 3322	1	ug/l	< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	
Xylene	DETSC 3322	1	ug/l	< 1.0	
MTBE	DETSC 3322	1	ug/l	< 1.0	
PAHs					
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	
Fluoranthene	DETSC 3304	0.01	ug/l	0.01	
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 24-18649 Client Ref ~ 24-0640

Contract Title ~ Dublin St North Monaghan

Lab No	Sample ID	Material Type	Result	Comment*	Analyst	
2387714	BH03 10 0.50	SOIL	NAD	none	Ben Rose	
2387715	BH03 11 1.00	SOIL	NAD	none	Ben Rose	

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Inappropriat

Information in Support of the Analytical Results

Our Ref 24-18649 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Containers Received & Deviating Samples

		Date			e container
Lab No	Sample ID ~	Sampled ~	Containers Received	Holding time exceeded for tests	for tests
2387714	BH03 0.50 SOIL	29/07/24	GJ 250ml, GJ 60ml, PT 1L	BTEX / C5-C10 (14 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Anions (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), Organic Matter (Manual) (28 days), PAH FID (14 days), PAH MS (14 days), PCB (30 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), EPH/TPH (14 days)	1
2387715	BH03 1.00 SOIL	29/07/24	GJ 250ml, GJ 60ml, PT 1L	BTEX / C5-C10 (14 days), EPH/Aliphatic/Aromatic (14 days), Mercury (28 days), Total Sulphate ICP (30 days), Anions (30 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Manual) (28 days), PAH MS (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days)	
2387716	BH03 0.50 LEACHATE	29/07/24	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (4 days), BTEX / C5-C10 (14 days), Conductivity (28 days), Conductivity (non reportable) (28 days), Chromium, Hexavalent (4 days), Hardness (7 days), Metals ICP Total (30 days), Anions (28 days), Kone (4 days), Kone (Sulphide) (5 days), pH/Cond (1 days), Naphthalene (14 days), Ammoniacal Nitrogen as N (10 days), PAH MS (4 days), Phenol - Monohydric Low Level (30 days), Cyanide/Mono pHoh (14 days), Cyanide/Mono PhOH Low Level (14 days), TOC AN (28 days)	
2387717	BH03 0.50 LEACHATE	29/07/24	GJ 250ml, GJ 60ml, PT 1L	Conductivity (non reportable) (28 days), Conductivity uS/cm (28 days), Anions (28 days), pH/Cond (1 days), Phenol Index (30 days), Cyanide/Mono pHoh (14 days), Total Dissolved s (28 days), TOC AN (28 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Our Ref 24-18649 Client Ref ~ 24-0640 Contract ~ Dublin St North Monaghan

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

HSHeadspace analysisEHExtractable Hydrocarbons - i.e. everything extracted by the solventCUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatographyTotalAliphatics & AromaticsALAliphatics onlyARAromatics only#1EH_2D_Total but with humics mathematically subtracted#2EH_2D_Total but with fatty acids mathematically subtracted
CUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatographyTotalAliphatics & AromaticsALAliphatics onlyARAromatics only#1EH_2D_Total but with humics mathematically subtracted
1DGC - Single coil gas chromatography2DGC-GC - Double coil gas chromatographyTotalAliphatics & AromaticsALAliphatics onlyARAromatics only#1EH_2D_Total but with humics mathematically subtracted
2DGC-GC - Double coil gas chromatographyTotalAliphatics & AromaticsALAliphatics onlyARAromatics only#1EH_2D_Total but with humics mathematically subtracted
TotalAliphatics & AromaticsALAliphatics onlyARAromatics only#1EH_2D_Total but with humics mathematically subtracted
AL Aliphatics only AR Aromatics only #1 EH_2D_Total but with humics mathematically subtracted
AR Aromatics only #1 EH_2D_Total but with humics mathematically subtracted
#1 EH_2D_Total but with humics mathematically subtracted
#2 EH_2D_Total but with fatty acids mathematically subtracted
_ Operator - underscore to separate acronyms (exception for +)
+ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total
TPH (C10-C40)	EH_1D_Total
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C10-C44	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL

Aliphatic C35-C44 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C44 Aromatic C10-C44 Ali/Aro C10-C44

EH_CU_1D_AL EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_Total

Key:

~ Sample details are provided by the client and can affect the validity of the results

* -not accredited.

-MCERTS (accreditation only applies if report carries the MCERTS logo).

\$-subcontracted.

n/s -not supplied.

I/S -insufficient sample.

U/S -unsuitable sample.

t/f -to follow.

nd -not detected.

End of Report

APPENDIX K SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

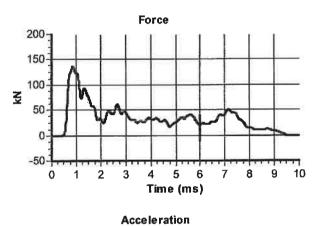
in accordance with BSEN ISO 22476-3:2005

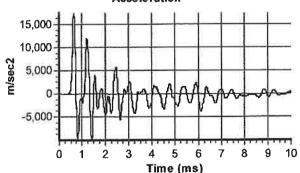
Southern Testing Unit 11 Charlwoods Road East Grinstead West Sussex RH19 2HU

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.6
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	64786
Accelerometer No.2:	64789

n,

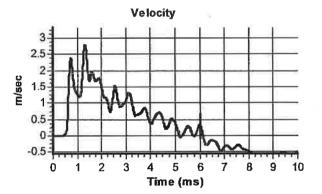

SPT Hammer Ref:	1411
Test Date:	17/02/2024
Report Date:	19/02/2024
File Name:	1411.spt
Test Operator:	RS

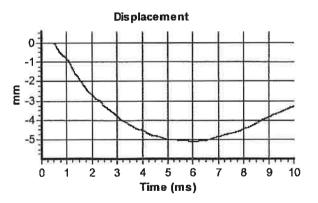

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0

Comments / Location

CAUSEWAY


Calculations


Area of Rod A (mm2):		983	
Theoretical Energy E _{theor}	(J):	473	
Measured Energy E _{meas}	(J):	313	

Energy Ratio E_r (%):

66

The recommended calibration interval is 12 months

Signed: Bob Stewart Title: Technician

PROPOSED DEVELOPMENT NEW CIVIC CENTRE MONAGHAN MONAGHAN CO. COUNCIL

CORA CONSULTING ENGINEERS

CONTENTS

I	INTRODUCTION
П	FIELDWORK
III	TESTING
III	DISCUSSION / SUMMARY

APPENDICES

I	BORING	RECORDS

- II ROTARY CORE LOGS
- III TRIAL PIT RECORDS
- IV BRE DIGEST 365 DATA
- V LABORATORY
 - a. Geotechnical Soil and Rock Data
 - b. Chemical and Environmental Data
- VI SITE PLAN

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). The following Irish (IS) and European Standards or Norms are referenced:

- IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
 IS EN ISO 14688 2:2004 Control of A laboratory in the second second
- IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler or Piston Sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 to obtain the Energy Ratio (E_r) of each hammer. A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{mers} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The recorded number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004.

Where peat has been encountered during site works, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for the project client and the information should not be used without prior written permission. Any recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

REPORT ON A SITE INVESTIGATION

NEW CIVIC OFFICES FOR MONAGHAN COUNTY COUNCIL

CORA CONSULTING ENGINEERS

Report No. 24665

July 2023

I Introduction

A major new development is proposed for a site in Monaghan where new Civic Offices are to be located.

An investigation of sub soil conditions in the area of the new development has been carried out by IGSL for CORA, Consulting Engineers, on behalf of Monaghan County Council.

The scheduled site investigation included the following elements.

*	Cable Percussion Boreholes	8 nr.
•	Rotary Core Holes	3 nr.
٠	Standpipe Installations	1 nr.
٠	Trial Pits	14 nr.
٠	BRE Digest 365 Infiltration Tests	4 nr.
•	Geotechnical Laboratory Tests	
*	Chamical and Environmental Testa	

* Chemical and Environmental Tests

This report includes all factual data from field and laboratory operations and discusses these findings relative to foundation and infrastructural design for the proposed new development.

Page 1

II Fieldwork

This development is to take place on an undulating greenfield site in Monaghan Town.

The exploratory locations are noted on the drawing enclosed in Appendix VI and were marked out by IGSL on site. All locations have been referenced to national grid and ground levels established.

The various elements of the investigation are detailed in the following paragraphs. All field works were supervised by an experienced geotechnical engineer who carefully recorded stratification, took photographs as necessary, recovered samples and prepared detailed records.

Close liaison was maintained throughout with CORA Consulting Engineers and Monaghan County Council personnel.

All appropriate documentation was submitted and approved prior to site commencement. Each location was scanned electronically (CAT) to ensure that existing services were not damaged. A shallow trial pit was also opened by hand at borehole / corehole locations to confirm this.

Drawings from the various utilities were also examined to ensure that major services were avoided.

Statutory HSE safety precautions relating to general safety and COVID 19 were strictly observed, with working areas restricted to IGSL personnel only, to ensure safety of the general public.

Boreholes

Boreholes were 200mm diameter and were constructed using conventional cable percussion equipment. Holes were referenced BH01 to BH08. A trial pit was opened at each borehole location to 1.00 metre deep to ensure that underground services were not damaged.

Shallow refusal was recorded on boulder obstructions at two locations (BH04 and BH06). Following a period of abortive chiselling, the equipment was moved by about 3 metres and re-bores were taken. These are referenced BH04A and BH06A.

Page 2

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement. It was not possible to recover undisturbed samples because of the hard and granular nature of the strata encountered.

The findings are fairly consistent, with topsoil generally overlying a1.50 stratum of soft to firm brown sandy SILT /CLAY.

Stiff brown sandy gravelly CLAY, typically containing cobble and boulder material, is encountered at shallow depth (generally 0.50 to 1.00 metres). This stratum continues to about 2.50 metres where very stiff to hard dark grey gravelly CLAY is noted. This stratum also contains significant cobbles and boulder.

Boreholes were terminated on boulder obstructions in all locations at varying depths. Chiselling techniques were used in all locations in an attempt to advance borehole depths without success.

The stiff brown and grey gravelly CLAY encountered on this site is a GLACIAL TILL or BOULDER CLAY with the high percentage of coarse material typical of the stratum.

The increasing strength with depth pattern particularly in the base grey boulder clay is also noted. The final refusal depths are **NOT** indicative of rock horizon.

The borehole findings are summarised in the following TABLE A:

Ref	Sandy Clay	Stiff brown BC	Stiff grey BC	Refusal Depth
BH01	0.30 - 1.20	1.20 - 3.00		3.00
BH02	0.30 - 0.70	0.70 - 2.50	2.50 - 4.50	4.50
BH03	0.30 - 1.50	1.50 - 3.70		3.70
BH04	0.30 - 1.20			1.20
BH04A	0.30 - 0.50	0.50 - 2.50	2.50 - 4.50	4.50
BH05	0.30 - 1.50	1.50 - 2.00	2.00 - 4.50	4.50
BH06	0.30 - 0.50	0.50 - 1.00		1.00
BH06A	0.30 - 0.50	0.50 - 1.00		1.00
BH07	0.20 - 0.50	0.50 - 1.00		1.00
BH08	0.30 - 1.00	1.00 - 1.80	1.80 - 3.40	3.40

TABLE A

Ground water ingress was note in two locations, at 3.00 metre BGL in BH01 and at 4.50 metres BGL in BH05. The remaining boreholes were DRY.

Rotary Core Drilling

Rotary core drilling was employed at three of the borehole locations to advance investigation depth, establish bedrock horizon and recover representative rock core if practical.

A BT-44 drilling rig was used to drill in each location using triple tube core drilling technique and an air-mist coolant. Symmetrix open hole drilling (100mm diameter) was used through the overburden deposits.

Detailed drilling records are presented in Appendix II with accompanying core photographs. The records note Total and Solid Core Recovery (TCR / SCR) and provide a detailed geological description of the rock.

Drilling continued in each location to depths between 10.50 and 15.00 metres, penetrating very stiff to hard GLACIAL TILL consisting of brown or grey gravelly CLAY with extensive boulder presence.

Some core was recovered in the hard base till. The enclosed core photographs clearly indicate the significant boulder presence.

The strength of the boulder clay was established by standard penetration tests taken at 1.50 metre intervals during the drilling operation. Results are noted in the right hand column of the records. SPT values typically exceed N=40 with numerous test refusals recorded.

A slotted PVC standpipe was installed in RC02 to facilitate on-going monitoring of ground water level. The installation was sealed at surface and protected by a steel cover.

The rotary core findings are summarised in the following table.

Hole No.	Overburden	Core Recovered	Standpipe	
 RC02	0 10.50		0 - 10.50	
RC03	0 - 10.50	8.10 - 10.50		
RC06	0 - 15.00	13.5 - 15.00		

TABLE B

Trial Pits

Trial Pits were scheduled in fourteen specified locations and referenced TP01 to TP14. A tracked excavator was used under engineering supervision. Detailed records for each location are presented in Appendix III. These records note the soil stratification and record sampling and ground water details.

Topsoil surface was noted in each location generally overlying a zone of soft SILT/CLAY. Firm to stiff brown or grey gravelly CLAY was then encountered, this stratum typically containing cobbles and boulders.

The findings are consistent with the stratification noted in the boreholes.

Several trial pits were terminated on large boulders. The findings are summarised and presented as follows:

Topsoil	Soft SILT- CLAY	Stiff gravelly CLAY	Water
0-0.25	0.25 - 0.90	0.90 - 1.80	Dry
0 - 0.25	0.25 - 0.55	0.55 - 1.40	Dry
0 - 0.20	0.20 - 0.80	0.80 - 1.70	Dry
0 - 0.10	0.10 - 0.60	0.60 - 1.80	Dry
0 - 0.20	0.20 - 0.50	0.50 - 2.10	Dry
0 - 0.25	0.25 - 0.80	0.80 - 1.50	1.00
0 - 0.25	0.25 - 1.50	1.50 - 1.90	Dry
0 - 0.25	0.25 - 0.50	0.50 - 2.20	Dry
0 - 0.25	0.25 - 0.50	0.50 - 1.50	Dry
0 - 0.30	0.30 - 0.50	0.50 - 2.50	Dry
0 - 0.20	0.20 - 1.10	1.10 - 2.30	Dry
0 - 0.30	0.30 - 1.00	1.00 - 1.80	Dry
0 - 0.20	0.20 - 0.50	0.50 - 1.40	Dry
0 - 0.20	0.20 - 0.50	0.50 - 2.10	Dry
	$\begin{array}{c} 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.20 \\ 0 - 0.10 \\ 0 - 0.20 \\ 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.25 \\ 0 - 0.30 \\ 0 - 0.30 \\ 0 - 0.30 \\ 0 - 0.20 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE C

Trial Pits were backfilled with the excavated spoil, compacted in layers, the disturbed areas were levelled and coarse material was removed.

Page 5

BRE Digest 365 Test

Infiltration testing was performed at four locations as specified in accordance with BRE Digest 365 'Soakaway Design'. Tests are referenced SA01 to SA04. Detailed data is presented in Appendix IV.

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. The test is carried out over two cycles following initial soakage.

The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute. In these calculations the exposed area is the sum of the base area and the average internal area of the permeable stratum over the test duration. Design is based on the slowest infiltration rate, which has been calculated from the final cycle.

The stratification in the test area comprised Topsoil over gravelly sandy SILT/ CLAY.

Results are summarised as follows:

Test No.	Depth	Soil Type	Infiltration Rate (f) (Metres/ Minute)
SA 01	1.30	Gravelly CLAY	0.00173
SA02	1.60	Gravelly CLAY	0.00023
SA03	1.60	Gravelly CLAY	5.3E-05
SA04	1.30	Gravelly CLAY	0.0000

TABLE D

The results confirm low to very low permeability for the cohesive gravelly clay soils present on the site.

III. Testing

In Situ

Standard penetration tests were carried out at approximate 1.00 metre intervals in the geotechnical boreholes and at 1.50 metres in the Rotary Core Holes to measure relative in-situ soil strength. N values are noted in the right hand column of the individual records, representing the blow count required to drive the standard sampler 300mm into the soil, following initial seating blows. Where full test penetration was not achieved the blow count for a specific penetration is recorded, or refusal is indicated where appropriate. The results of the tests are summarised as follows:

STRATUM	N VALUE RANGE	COMMENT
Gravelly CLAY (Bo	ulder Clay)	
1.00 m BGL	6 to 13	Soft to Firm
2.00 m BGL	10 to 29	Firm to Stiff
3.00 m BGL	26 to 50	Stiff to Hard
4.00 m BGL	> 50	Hard
4.00 to 15.00 m BGL		
(Rotary Holes)	40 to >50	Hard

Limited penetration SPT tests with refusal were recorded on numerous occasions, reflecting a high concentration of cobble / boulder material in the glacial till

Laboratory

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical testing was carried out by IGSL in it's INAB-Accredited laboratory. Chemical and environmental testing was carried out in the UK by EUROFINS / CHEMTEST Ltd. The test programme included the following elements:

Liquid and Plastic Limits / Moisture Content	IGSL
PSD Grading by Wet Sieve and Hydrometer	IGSL
MCV	IGSL
CBR	IGSL
Compaction	IGSL
Organic Content	EUROFINS
Sulphate / Chloride / pH	EUROFINS
RILTA Suite Environmental	EUROFINS

All laboratory data is presented in Appendices Va and Vb and individual tests are discussed briefly as follows:

Index Properties / Natural Moisture Content

Classification tests have been carried out on samples of the cohesive soils from borehole and trial pit locations.

The glacial tills plot generally in the CI/CL zone of the standard Classification chart indicative of low plasticity gravelly CLAY matrix material. Natural Moisture Content ranges from 14 to 19 %.

Grading

Wet sieve and hydrometer analysis has been carried out on samples of the cohesive soils from both boreholes and trial pits. The graphs are typically straight line, grading from the fine clay to coarse gravel fraction. The pattern is very typical of glacial till or boulder clay deposition.

Organic Content

Six samples of the soils from the site had organic contents established. Samples were generally taken from shallow depths below the topsoil. Values of 1.0 to 2.5% were determined indicative of very low to negligible organic content.

MCV/CBR/Compaction

Six large composite samples were selected from Trial Pits 01 / 03 / 05 / 09 / 12 and 14 and a series of tests were scheduled to establish the soil characteristics relative to possible re-use during the new development.

The tests carried out included MCV (Moisture Condition Value), Natural Moisture Content, CBR (California Bearing Ratio), Dry Density / Moisture Content relationship.

Ref No.	TP01	TP03	TP05	TP09	TP12	TP14
Depth	0.70	0.6	0.7	0.7	0.8	1.5
Natural MC (%)	15 ,	13	13	13	10	14
MCV	6.6	7.3	6.8	6.8	6.7	7.8
CBR (%)	5.6	4.6	4.1	2.0	7.7	3.0
Max.Dry Density (mg/cu.m.) 1.90	1.86	1.86	1.88	1.89	1.85
Optimum Moisture (%)	11	12	12	12	12	14

The results are summarised as follows:

Chemical Suite (Sulphate Chloride pH)

Six samples were sent for analysis to BRE Chemical Suite parameters.

Sulphate concentrations (SO4 2:1 extract) of <0.010 to 0.240 g/l were established with pH values ranging from 7.8 to 8.6. Chloride concentrations (<0.010 to 0.24 g/l) were also determined.

The results indicate a design class of DS-1 (ACEC Classification for Concrete) for sulphate concentrations below 0.5 g/l. No special precautions are necessary to protect below ground foundation concrete.

RILTA Environmental Suite

Six samples of the sub soils were sent to specialist environmental laboratory EUROFINS and testing was carried out in accordance with RILTA requirements to establish Landfill Waste Acceptance Criteria (WAC).

Detailed results are presented in Appendix V σ . All samples tested fall into the INERT category with no elevated contaminant levels recorded.

Material excavated from this site can be safely disposed of either within the site boundary or off site to a suitably licensed Landfill Facility

Asbestos screening was carried out on all RILTA samples with no traces of Asbestos noted.

A comprehensive Waste Characterisation Assessment may be required by landfill operators. This can be prepared by specialist environmental consultants using the factual data from field and laboratory as presented in this report.

IV. Discussion:

A major development is being undertaken at this site in Monaghan. A new CIVIC CENTRE is to be constructed for Monaghan County Council.

A detailed investigation of subsoil and bedrock has been carried out under the direction of CORA Consulting Engineers in the area of development.

The exploratory locations are detailed on the site plan in Appendix VI.

The factual data from the field and laboratory is presented in Sections 1 to III of this report.

The site is grassed with some significant variation in ground level.

SUMMARY STRATIFICATION

TOPSOIL overlies soft to firm sandy SILT/CLAY. This upper material extends to depth between 0.50 and 1.50 metres as shown in TABLE A and TABLE B.

Stiff brown gravelly CLAY (brown BOULDER CLAY) is then encountered and continues to about 2.00 metres where it changes to very stiff to hard grey gravelly CLAY (grey black BOULDER CLAY). Proof core drilling confirmed that the GLACIAL TILL continues to at least 15 metres BGL. Bedrock was not established.

UPPER SILT/CLAY

The soils extending from surface to depths up to 1.50 metre are described as soft to firm sandy slightly gravelly SILT/CLAY. SPT values of N=6 to N=10 have been recorded at a depth of 1.00 metre.

BOULDER CLAY

GLACIAL TILL or BOULDER CLAY has been confirmed below approximately 1.50 metres, the stratum continues to at least 15.00 metres BGL. Visual inspection of trial pit excavations and results of in-situ Standard Penetration Tests are indicative of stiff to hard consistency.

The characteristics of the regional boulder clay or glacial till are very well documented and the findings from this detailed investigation are consistent with extensive published data.

ALLOWABLE BEARING PRESSURES

The soil strength has been assessed visually in the trial pits and confirmed by Standard Penetration Tests in boreholes and core holes. The allowable bearing pressures indicated by the field data are summarised as follows:

Average N Value	Allowable Bearin	g Pressure
7	75 kPa	(Upper Silt/Clay)
20	200 kPa	(Boulder Clay)
35	300 kPa	
>50	400 kPa	
	7 20 35	7 75 kPa 20 200 kPa 35 300 kPa

FOUNDATION RECOMMENDATIONS

The use of traditional reinforced foundations for the new Civic Offices development is proposed. Foundations to be placed on the stiff brown or grey boulder CLAY using the allowable bearing pressures indicated above.

We strongly recommend visual inspection of foundation excavations by experienced personnel to ensure uniformity and suitability of the founding medium. Any soft or suspect material should be removed and where necessary replaced with low-grade concrete. The glacial till soils are sensitive to moisture variation and should be protected by blinding following excavation.

The presence of extensive boulders should also be noted with possible over-break in excavation occurring.

The majority of boreholes and trial pits were dry with only occasional water seepages recorded. This may indicate isolated water bearing gravelly zones, typical of the heterogeneous nature of the regional Glacial Till.

SETTLEMENT

Settlement of the order of 5 to 10mm can be expected under the foundation loadings indicated above. Settlement should be quite uniform and differential movement is not anticipated.

EXCAVATION

Given the variations in site levels it is likely that significant cut and fill operations will be required. No major issues will arise with excavation, other than the presence of boulder obstructions and possibly water ingress if gravel zones are encountered.

A detailed programme of laboratory testing has been carried out to establish soil parameters relative to the suitability of excavated material for re-use as engineered fill.

The results reflect a high degree of consistency in the boulder clay over the site area and will allow the appointed contractor to design a suitable programme for earthworks on this site.

BRE DIGEST 365 TESTS

The test results reflect very low permeability characteristics in the gravelly CLAY soils. This is very typical of the cohesive material. Clay matrix material is generally unsuited to dispersion of storm or surface water and consideration should be given to the use of the Local Authority Drainage System for this development.

FOUNDATION CONCRETE

No special precautions are necessary for protection of below ground concrete.

ENVIRONMENTAL

Six samples have been tested to RILTA Suite Parameters and the results confirm an INERT classification for the soils. Excavated material can be safely used on the site or can be disposed of to a suitably licensed Landfill.

A waste Characterisation Assessment (WCA) may be necessary and should be carried out by environmental specialists. This WCA should be submitted to the relevant waste management facility, to confirm suitability for acceptance.

<u>IGSL/JC</u> July 2023 Appendix I Boring Records

	(ଟ୍ରଟ)	/			GE	OTEC	HNICA	AL BOR	ING	RECO	RD				24665		
со	NTRA	ст и	lona	ghan Ac	tive Travel	- Main Site	е						BOREHO	OLE NO	D. BH01 Sheet 1 of 1		
		INATES	(m A	AOD)				PE IOLE DIAME IOLE DEPTI		nm) 2	Dando 20 200 3.00	000	DATE CO		OMMENCED 13/05/2023 OMPLETED 13/05/2023		
	ENT GINEE		lona BFL	ghan Co	o.Co.			MMER REF			1	PROCES	BORED BY P.Allan PROCESSED BY F.C				
e										Ê		Sam	ples			0	
Depth (m)				Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details	
- 0	the second	SOIL	_					11 21 1 1		0.30							
	Firm	ı brown s	and	y SILT/C	LAY with o	occasional	gravel	×9		1.00	AA192931	В	0.50				
E1		grey sa						<u> </u>		1.20	AA192932	в	1.00		N = 13 (2, 3, 2, 3, 4, 4)		
	Brow	vn sandy	' gra	velly CL/	AY with occ	casional co	obbles										
2										2.70	AA192933	в	2.00		N = 17 (2, 2, 2, 4, 5, 6)		
E	Brown sandy gravelly CLAY with some cobble									3.00							
- 3		truction of Boreh	iole i	at 3.00 n	n								č	N = 50/75 mm (25, 25, 50)			
- - - 4								-			. P						
- 5														2			
6																	
7																	
- 8																	
9																	
	PD S			NGICHIS													
	ARD STRATA BORING/CHISELLING m (m) To (m) Time Comments							Water			Sealed	Rise	e Ti	mal	VATER STRIKE DET	AILS	
_	2.8 3 1.5						Strike 3.00		opth	At No	<u>To</u> 1.50	(m	<u>nin)</u> 20	Moderate			
IN CO.								_		Hole	Casing	Der	oth to		ROUNDWATER PRO	GRESS	
	NSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type					Date		Depth 3.00	Depth Nil		ater	Comme					
REN	EMARKS CAT scanned location and hand due inspection							pit was car	ried	Samp	e l ecen	d					
	REMARKS CAT scanned location and hand dug inspection p out.									B - Bulk D LB - Large	e Legen Disturbed (tub) isturbed Bulk Disturbe ronmental Sar	d	Vial + Tub)	Sam P - U	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample		

0	<u>ઉडा</u>			G	EOTECI	HNICA		INGI	RECO	RD				24665	
CO	NTRA	ст м	lonaghan	Active Trave	el - Main Sit	e					1	BOREHO	DLE NO	D. BH02 Sheet 1 of 1	
		NATES	(m AOD)				PE OLE DIAM OLE DEPT		nm) 2	Dando 20 200 1.50	000	DATE CO		NCED 13/05/2023	
	ENT GINEE		lonaghan BFL	Co.Co.		ALTERIAL ADD PRESERVED	MMER REI Y RATIO (%		1	1		BORED		P.Allan BY F.C	
Ê									Ê		-	ples			ø
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
- 0	1.1.1.2.540.00	SOIL					<u> 11/2 11/2 1</u>		0.30						
EL				CLAY with o			×		0.70	AA197801	в	0.50			
1	Stiff	brown sa	andy SILT.	/CLAY with s	some grave	I				AA197802	в	1.00		N = 6 (1, 0, 1, 1, 2, 2)	
2									2.50	AA197803	В	2.00		N = 26 (2, 3, 6, 8, 5, 7)	
3	Stiff	to very s sional co	tiff grey sa obbles	andy gravelly	CLAY with			2.00	AA197804	в	3.00		N = 50/225 mm (4, 5, 9, 15, 26)		
4				P				4.50	AA197805	в	4.00		N = 50/150 mm (6, 10, 20, 30)		
5 5 8			ole at 4.50										2		
HAI	RD ST	RATA B	ORING/CI	HISELLING									 w		AILS
From		To (m)	Time (h)	Comments		Wate Strike	r Ca	sing Septh	ealed At	Rise To		mo	Comments		
	0.7 0.9 1 4.3 4.5 1.5										10			No water strike	
10000									Hole I	Costar			GR	OUNDWATER PRO	GRESS
		TION DI					Date		Hole Depth	Casing Depth	Dep	oth to ater	Comme	ents	
	Date			op RZ Base							x				
REN	ARKS	S CAT s out.	canned lo	cation and h	and dug in	spection	pit was ca	rried	B - Bulk Di LB - Large	e Legen Disturbed (tub) sturbed Bulk Disturber ronmental Sam	4	Vial + Tubl	Samp P - U	Undisturbed 100mm Diameter ple ndisturbed Piston Sample Vater Sample	

REPORT NUMBER

24665

CONTRACT Monaghan Active Travel - N	1	-					BOREHOLE NO. BH03 SHEET Sheet 1 of 1				
CO-ORDINATES GROUND LEVEL (m AOD)		'e Dle Diame" Dle Depth		im) :	Dando 20 200 3.70		DATE CO DATE CO		CED 12/05/2023 ED 12/05/2023		
CLIENT Monaghan Co.Co. ENGINEER DBFL	100-00 POST 00 SERVICE	VIMER REF. (RATIO (%)					BORED		P.Allan F.C		
		Sa						amples			
Description		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe Details	
0 TOPSOIL		<u> 14 14 1</u>		0.30							
Soft to firm brown sandy SILT/CLAY wi gravel	th occasional	-X0			AA192934	в	0.50				
					AA192935	В	1.00		N = 7 (1, 2, 1, 2, 2, 2)		
2 Very brown sandy gravelly CLAY with o	occasional			2.30	AA192936	в	2.00		N = 10 (2, 2, 2, 3, 2, 3)		
cobbles				AA192937	в	3.00		N = 50 (6, 6, 10, 10, 20, 10)			
Obstruction			3.70					N = 50/75 mm (25, 50)			
6											
-9											
	- in the second										
From (m) To (m) Time (h) Comments		Water Strike	Cas	sing S	Sealed At	Rise To			TER STRIKE DET	AILS	
2.7 2.9 1 3.5 3.7 1.5								No water strike			
						r		GRO	OUNDWATER PRO	GRESS	
INSTALLATION DETAILS	Date		Hole Depth	Casing Depth	Der W	oth to ater	Commer	nts			
Date Tip Depth RZ Top RZ Base	Туре	-									
REMARKS CAT scanned location and hand out .	I dug inspection	pit was carri	ed	LB - Large	le Legen Disturbed (tub) listurbed Bulk Disturbed ironmental Sam	d	Vial + Tub)	Sample P - Und	ndisturbed 100mm Diameter 9 Histurbed Piston Sample 1ter Sample		

1	1
and and	المريد
	331

Sec. and	ାତ୍ତର	۶/				EUTEC				REGU	RD					24665	
со	NTRA	CT N	lonagh	an Act	tive Trave	el - Main Sit	e						BOREHO	OLE NO		BH04 Sheet 1 of 1	
		NATES	(m AO	D)				e Dle Diami Dle Dept	Dando 20 200 1.20	000	DATE COMMENCE DATE COMPLETE						
	IENT GINEE		lonagh BFL	an Co.	.Co.		Seat the states of the	IMER REF RATIO (%					BORED BY P.Allan PROCESSED BY F.C				
Ē										=		San	nples				0
Depth (m)				Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Fi	eld Test Results	Standpipe Details
- 0		SOIL						<u> 14 . 11 1</u>		0.30							
1	Grey cobb	/ SILT/C bles	LAY wi	th som	ne gravel :	and occasi	onal			1.20	AA192938	В	0.50			I = 50/75 mm (25, 50)	
2 3 4 5 6 7 9 9	End	truction of Boret	nole at	1.20 m	1												
HA	RDS	FRATA E		-11/2012/02/02/02/02/02/02/02/02/02/02/02/02/02	ELLING										ATER	STRIKE DET	AILS
Fron	n (m)	To (m)	Tim (h)	e Co	omments			Wate Strike		ising 3 epth	Sealed At	Rise To		me nin)	Comme	ents	
1	.1	1.2	1													ater strike	00000
INC	TALL	TIONE						-		Hole	Casing	De	oth to			WATER PRO	GRESS
_		ATION D				-		Date		Depth	Depth	W	oth to dater	Comme	ents		
	Date				RZ Base												
REM	MARK	S CAT s out.C rebore	Obstruc	d locat tion er	tion and h ncountere	hand dug in ed . Moved	spection p to BH04A	oit was car and atten	rried npted	LB - Larg	Disturbed (tub) Disturbed e Bulk Disturbed rironmental San	d	+ Vial + Tub)	Sam P-U	ple	l 100mm Diameter Piston Sample Ile	

REPORT NUMBER

And search	હરા			GE	UTECH	INICA	LBUR	INGI	KECO	RD				24665	
	NTRAC		onaghan .	Active Travel								BOREH SHEET	OLE NO	D. BH04A Sheet 1 of 1	
		IATES LEVEL (r	n AOD)		1		e Dle Diame Dle Depti		nm) 2	Dando 20 200 1.50	1	DATE C		NCED 13/05/2023	
ENG	ENT		naghan FL	Co.Co.	25		MER REF			1)	BORED BY P.Allan PROCESSED BY F.C mples			
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type		Recovery	Field Test Results	Standpipe Details
0	TOPS Stiff b		dy SILT/0	CLAY with so	me gravel				0.30	AA192939 AA192940	B	1.00		N = 21	
-3-3-4	Very : cobbl	stiff grey es	sandy gr	avelly CLAY v	with some				2.50	AA192941 AA192942	в	3.00		(2, 2, 3, 6, 8, 4) N = 50 (4, 4, 5, 10, 20, 15) N = 40/150 mm (6, 10, 19, 21)	
6		uction f Boreho	le at 4.50) m										(25, 50)	
9															
	-		Time	IISELLING			Water	- Ca	sing S	Sealed	Rise	Ti	ma	VATER STRIKE DET	AILS
rom 1. 4.4	1	To (m) 1.3 4.5	(h) 1 1.5	Comments			Strike		epth	At	To		nin)	Comments No water strike	
INST		TION DE	TAILS				Date		Hole	Casing	Der	oth to (GF	ROUNDWATER PRO	GRESS
D	ate	Tip Dep	oth RZ T	p RZ Base	Туре		-		Depth	Depth		aler		292	
REM	ARKS	CAT sc out .	anned lo	cation and ha	and dug ins	pection (oit was car	ried	D - Small I B - Bulk D	e Legen Disturbed (tub) isturbed Bulk Disturbe ronmental San		Vial + Tub)	Sam P-U	Undisturbed 100mm Diarneter pple Jndisturbed Piston Sample Water Sample	

ł

	હરા	.)		G	EOTEC	HNICA	IL BOR	ING	RECC	DRD				24665		
со	NTRA	ст и	lonaghan	Active Trave	el - Main Si	te						BOREHC SHEET	DLE NO	E NO. BH05 Sheet 1 of 1		
		NATES LEVEL	(m AOD)				YPE Dando 2000 HOLE DIAMETER (mm) 200 DAT						DATE COMMENCED 15/05/2023 DATE COMPLETED 15/05/2023			
100000	ENT GINEE		lonaghan BFL	Co.Co.		Access to scentile	MMER REI Y RATIO (%		-1	1		BY P.Allan SED BY F.C				
Ê									= î		1	nples		_	e	
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m) Depth	Recovery	Field Test Results	Standpipe Details	
- 0		SOIL					<u></u>		0.30							
E	grave		rown sand	IY SILT/CLA	Y with occa	isional	×9			AA192946	в	0.50				
1										AA192947	в	1.00		N = 6 (2, 6, 1, 1, 2, 2)		
E							×									
2	0.00				0.11	27			2.00	AA192948	в	2.00		N = 19		
-	occa	sion cob	bles	andy gravelly			0-0-			01102040		2.00		(2, 2, 3, 4, 5, 7)		
E	Firm cobb		rown sand	ly gravelly C	LAY with s	ome	2.0.0									
3	Stiff (to very s	tiff grey sa	andy gravelly	CLAY with	n	20			AA192949	в	3.00		N = 26		
-	10002-02020	sion cob		ly gravelly C	AY with s	ome	<u><u> </u></u>							(2, 3, 4, 6, 8, 8)		
4	cobb		TOWN Sand	ay graveny o		ome	2-0-									
4										AA192950	в	4.00		N = 50/150 mm		
E							<u>v. o</u>		4.50					(6, 8, 20, 30)		
		ruction	ala at 4 E)					1.00					N = 50/75 mm (17, 8, 50)		
- 5	End	or Boren	ole at 4.50	Jm												
-																
- 6																
E									10.							
7																
8																
1																
. 9																
HA	RD ST	RATA B	ORING/CI	HISELLING			1						- W	ATER STRIKE DET		
	-	To (m)	Time	Comments	í	Wate			Sealed	Rise		me c	Comments	ALO		
3.		3.9	(h) 1			Strike 4.50		epth 4.50	At No	To 3.50		iin) 🔪	Moderate			
4		4.5	1.5													
													GR	OUNDWATER PRO	GRESS	
INS'	TALLA	TION D	ETAILS				Dat	e	Hole Depth	Casing Depth	Der	oth to cater	Comme			
3.7 3.9 1 4.3 4.5 1.5 INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type REMARKS CAT scanned location and hand dug inspection pit out .									Depth	Deptil						
REN	ARKS	S CAT s out.	canned lo	cation and h	hand dug ir	spection	pit was ca	rried	D - Small B - Bulk I LB - Larg	le Legen Disturbed (tub) Disturbed Disturbed Disturbed	d		Sampi P - Un	disturbed Piston Sample		
-	_								Env - Env	vironmental Sar	nple (Jar +	Vial + Tub)	W - W	ater Sample		

/	1													RE	PORT NUMBER	
	GEL			GE	OTECHI	NICAL	BOR	RING I	RECC	RD					24665	
со	NTRACT	Mon	aghan Ac	tive Travel	- Main Site							BORE		ю.	BH06	
со	-ORDINA	TES			1 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	IG TYPE		ETED /-		Dando 20	000	SHEET	_	NCE	Sheet 1 of 1 D 16/05/2023	
GR	OUND LE	VEL (m	AOD)			OREHOL				200 1.00		DATE				
0.000	IENT GINEER	Mon: DBFI	aghan Co	.Co.	· · · · · ·									P.Allan F.C		
							5.110 ()					nples			1.0	e)
Depth (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recover		Field Test Results	Standpipe Details
- 0	TOPSO		aandu Cil	TICLAY	ith some see	112	<u>17. 317 1</u>		0.30	_	-					
	and occ	asional o	cobbles	TICLAY W	ith some gra						_	120000				
- 1	Obstruc					7	<u> </u>		1.00	AA197914	В	0.80			N = 50/75 mm (25, 50)	
	End of E	Borehole	at 1.00 n	ı												
Ξ_																
2	1															
3																
4																
5																
6																
7																
																6
8																
9																
	RD STRA		Timen				Wate	r Ca	sing	Sealed	Ris		Time	1.12	ER STRIKE DET	AILS
	22323	(m) 1	(h) C	omments			Strike	e De	epth	At	To		min)		nments	
		~												No	water strike	
									Hala	Cosing					NDWATER PRO	GRESS
	STALLATION DETAILS Date Tip Depth RZ Top RZ Base Type						Dat		Hole Depth	Casing Depth	De	pth to Vater	Comm	nents	1	
L				INE Dase	iype		1									
REM	0	AT scar ut . Obs ebore.	nned loca truction e	tion and hancountered	and dug insp d . Moved to	ection pi BH06A a	t was ca and atter	rried npted	B - Bulk D	le Legen Disturbed (tub) Disturbed e Bulk Disturbe			UT Sa	- Undist mple	urbed 100mm Diameter rbed Piston Sample	
	It								Env - Env	e Bulk Disturbe ironmental San	nple (Jar	+ Vial + Tub	Ŵ	- Water	Sample	

1		N												REPORT NUMBER	
1	JGST			GE	OTECHI	NICAL	. Bor	ing f	RECO	RD				24665	
cc	NTRAC	T Mon	aghan Act	ive Travel	- Main Site							BOREH	OLE NO		
	ORDIN	ATES .EVEL (m	AOD)		В		.E DIAME .E DEPTI		nm)	Dando 20	00	DATE C			
CL	IENT	Mon	aghan Co.	.Co.	S	PT HAM	MER REF	NO.				BORED		P.Allan	
	GINEER	DBFI			E	NERGY I	RATIO (%	<u>)</u>			Sar	PROCE nples	SSED B	F.C	
Depth (m)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
Ē	TOPS						<u>14 str</u> s		0.30			-			
11111	Very s and or	tiff brown casional	sandy SIL cobbles	.T/CLAY wi	th some gra	Ľ				AA171709	8	0.80			
	Obstru End o		at 1.00 m	•••••			<u>a - a -</u>		1.00			0.80		N = 50/75 mm (25, 50)	
2															
3															
4															
5															
6															
- 8															
			NING/CHIS									<u> </u>			
Fro			Time	omments			Water Strike		sing S pth	Sealed At	Ris To		ime	ATER STRIKE DET.	
INS).9	1	1				Canto		<u>r=1</u>			· · · ·		No water strike	
							<u> </u>						GF	ROUNDWATER PRO	GRESS
INS		Tion Dent		D7 Basel	Tune		Date		Hole Depth	Casing Depth		pth to Vater	Comme	ents	
	Date	TIP Depti	1 KZ 100	RZ Base	Туре										
RE	MARKS	CAT scal out .	inned locat	L lion and ha	ind dug insp	ection pi	l t was car	ried	LB - Large	le Legen Disturbed (tub) isturbed Bulk Disturbe	đ		Sam P-U	Indisturbed Piston Sample	
									1 ENV - ENV	ronmental San	obie (nat	- vidi + 19D)	¥¥ - 1	Water Sample	

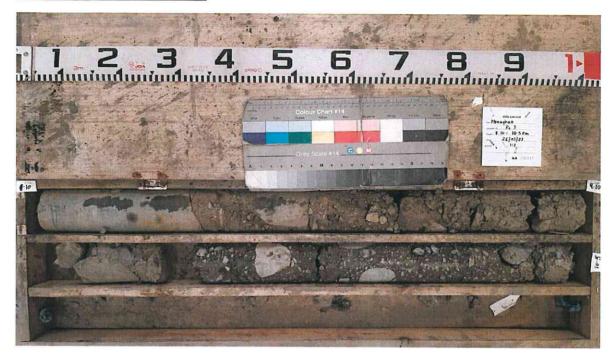
1	GSL	74.5			GE	OIEC	INICA	LBOR	ING	KECO	KD					24665	
	NTRAC		onagha	an Acti	ive Travel	- Main Site							BOREHO	DLE NO	D.	BH07 Sheet 1 of 1	
		NATES LEVEL (m AOD	D)				'e Dle Diame Dle Depti		nm) 2	Dando 20 200 1.00	000	DATE CO			The formation of the second	
	ENT GINEEF		onagha 3FL	an Co.	Co.			VIMER REF (RATIO (%		ſ			BORED PROCES		BY	P.Allan F.C	
Ê									_	2	-	1	nples				ø
Depth (m)				Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	F	ield Test Results	Standpipe Details
E	TOPS							<u> 14. 14. 1</u>		0.20	_						
- 1	very and c	stiff brov occasion	vn sand al cobb	dy SIL bles	T/CLAY w	ith some g	ravel			1.00	AA171710	в	0.80		2	N = 50/75 mm	
2		of Boreh															
		RATA B	ORING Time	2				Wate		sing 9	Socied	Die		mo		R STRIKE DET	AILS
From	ו (m)	To (m)	(h)	Co	omments			Strike		sing Septh	Sealed At	Rise To		me nin)	Comn	nents	
0	.9	1	1												No w	vater strike	
														G	ROUNI	OWATER PRO	GRESS
INS'	TALLA	TION DE	TAILS					Date		Hole Depth	Casing Depth	De	pth to (Comm	ents		
[Date	Tip De	pth RZ	<u>Z Тор</u>	RZ Base	Тур	e			Jopin	Deptil						
0 INS ⁻ REN	ARKS	CAT s out.	cannec	d locat	ion and ha	and dug in	spection	pit was car	ried	L8 - Larg	le Legen Disturbed (tub Disturbed e Bulk Disturbe ironmental Sa	ed	+ Vial + Tub)	Sam P - U	ple	ed 100mm Diameter d Piston Sample nple	
	_																

A	<u>331</u>			GE	OTECH	NICAI	BUR	INGI	KECO	RD				24665	
со	NTRA	ст м	onaghan /	Active Travel	- Main Site							BOREHO SHEET	OLE NO	D. BH08 Sheet 1 of 1	
		NATES LEVEL (m AOD)		E		E LE DIAMI LE DEPT		nm) 2	Dando 20 200 3.40	000	DATE CO		NCED 14/05/2023	
	ENT GINEEI		onaghan (3FL	Co.Co.			MER REF RATIO (%			1	1	BORED		P.Allan SY F.C	
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
1	Stiff	brown sa	iff grey sa	/CLAY with o					0.30	AA192945 AA192946 AA192947	в	0.50 1.00 2.00		N = 12 (1, 2, 2, 2, 3, 5) N = 29 (2, 3, 3, 10, 10, 6)	
4		ruction of Boreh	ole at 3.40) m		-			3.40					N = 50/150 mm (10, 15, 25, 25) N = 50/75 mm (34, 25, 50)	
7															
9															
	- T		ORING/CI	HISELLING			Wate		sing	Sealed	Rise	e Ti	mo	VATER STRIKE DET	AILS
	n (m) 6 2	To (m) 2.8 3.4	(h) 0.75 1.5	Comments			Strike		epth	At	To		nin)	Comments No water strike	
INS	TALLA		ETAILS			-	Dat	e l	Hole	Casing	De	oth to ater	GF	ROUNDWATER PRO	GRESS
	Date			op RZ Base	Туре)		~	Depth	Depth		ater			
INS REI	MARK	S CAT s out.	canned lo	ocation and h	and dug ins	pection p	bit was ca	rried	LB - Larg	Disturbed (tub Disturbed (tub Disturbed e Bulk Disturbe rironmental Sar	bd	+ Vial + Tub)	Sam P-L	Undisturbed 100mm Diameter ople Indisturbed Piston Sample Water Sample	

Appendix II Rotary Core Logs Photographs

/		e				•••••									R	EPOR	r NUM	BER			
(# _!	୍ତି	31./ 51./				GEOT	ECI	INIC	CAL CO	RELOC	G RECO	RD				2	2466	5			
cc	DNTR	TOAS	٨	Ionaç	ghan Acti	ve Travel	- Mai	n Site						LLHOLE	NO	RC					
cc)-OR	DINA	TES										SHE	ET E DRILL	ED		et 1 of 5/2023				
GF	SOUN	ND LI	EVEL	(m0	D)				RIG TYPE			Beretta T Air/Mist	AA	'E LOGG			5/2023				
1	IENT Igine			tonag ORA	ghan Co.	Co.				TON (deg) AMETER (m	ım)	-90 78	1	LLED BY			SL - J				
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa L (п	cture acing og im) ^{60 500}	Non-intact Zone	Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)			
, , , , , , , , , , , , , , , , , , ,	1.50	0	0	0					SYMMET returns of	'RIX DRILLI I soft CLAY.	NG: No reco	overy, obse	rved by dri	ller as							
2 2 3	3.00	0	0	0																	
4	4.50	0	0	0											4.50			N = 24 (3, 2, 4, 7, 7, 7, 6)			
5 11	6.00	0	0	o					SYMMET returns of	RIX DRILLII gravelly CL	NG: No reco AY with occ	wery, obse asional cob	rved by dri bles	ler as				N ≈ 53 (7, 7, 11, 10, 15, 17)			
6 	7.50	0	0	0														N = 43 (4, 6, 10, 10, 10, 13)			
8		0	0	0														N = 51 (17, 9, 11, 13, 13, 14)			
81.6U1 6/8/23	9.00	0	0	0						1								N = 51/102 mm (7, 18, 33, 18)			
Hol			om 0.	00-1	0.50m	·				Water Strike	Casing Depth	Sealed At	Rise To	Time (min)		THE ST		DETAILS			
IS NIN - COC										Sunc	<u></u>		.10	<u>(min)</u>				recorded			
											Hole	Casing	Depth +	<u></u>		,	ATER	DETAILS			
	INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type									Date	Depth	Depth	Depth to Water	' Comr	ments		·				
25	-05-2		10.5		1.00	10.50		50mm		<u> </u>											

	5	-				GEOT	FCI			RE LOG	RECO	nen			R		TNUM	
Ń	<u>)</u> @§	5 <u>5</u> /														2	2466	5
cc	ONTR	АСТ	M	onaç	han Acti	ve Trave	I - Mai	n Site						ULLHOLE	NO	RC		-
cc)-ori	DINA	TES										DA	EET TE DRILL	.ED		et 2 of 5/2023	
			EVEL (mO	D)				RIG TYPE			Beretta 1 Air/Mist	⁷⁴⁴ DA	TE LOGG	ED		5/2023	
	IENT			onag DRA	han Co.	Co.		r	INCLINAT	ION (deg) METER (m	rm)	-90 78	- E	GGED B			SL - J. .O'She	
Downhole Depth (m)	1	T.C.R.%	S.C.R.%	R.Q.D.%	Spa L (m	cture acing og 1m) 50 50	Non-intact Zone	Legend			Descrip				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
	10.50								returns of	RIX DRILLI gravelly CL	AY with occ	casional co	erved by d bbies (cor	riller as ntinued)	10.50			N = 48
																		(6. 8, 11, 12, 12, 13)
- 19 - 19																		
	MARI		F				L	l							WAT	ER ST	RIKE I	DETAILS
	e cas	ed fro	om 0.0	0-10).50m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Cor	nment	s	
																		recorded
	TALL	ATIC	ON DE	TAI	LS					Date	Hole	Casing	Depth Water	to Com	GRO ments	UNDW	ATER	DETAILS
	Date	T	ip Der	oth	RZ Top	RZ Bas				- 4.0	Depth	Depth	Water					
25	Date Tip Depth RZ Top RZ Base Type 5-05-23 10.50 1.00 10.50 50mm SP																	


K		and the second				GEOT	ECH	INIC	AL CO	RE LOO	RECO	ORD			R	EPORI		
) S S	<u></u>														2	2466	5
co	NTR	ACT	· N	lona	ghan Acti	ve Travel	- Maiı	n Site						ULLHOLI IEET	E NO	RC		0
			TES	(mC)D)				RIG TYPE			Beretta 1	DA	TE DRILI		26/0	et 1 of 5/2023 5/2023	3
CL	IENT GINE	•	N		ghan Co.	Co,			FLUSH INCLINAT CORE DIA	ION (deg) METER (m	m)	Air/Mist -90 78		ULLED B GGED B			SL - J O'She	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa L (m	cture acing og am) io sod	Non-intact Zone	Legend			Descrip				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
	8.10	0	0	0					returns of Returns of gravely Cl	RIX DRILLI gravelly CL	stiff, dark	brown, slig	htly sandy	, Gravel	8.10			(9, N = 57 (9, 13, 17, 11, 15, 14) (5, 11, 10, 17, 11, 12) (4, 7, 9, 9, 14, 15) (4, 11, 11, 13, 13, 16)
	9.10	71	0	0														N = 50 (8, 11, 12, 13, 10, 15)
	IARI e cas		om 0.(00-8	1.00m	·· .				Water	Casing	Sealed	Rise	Time				DETAILS
										Strike	Depth	At	To	(min)		mments o water		recorded
										l				1	GRC	UNINA		DETAILS
			ON DI							Date	Hole Depth	Casing Depth	Depth Wate	to r Corr	ments			
	Date		Tip De	pth	RZ Top	RZ Base		Түре	>							LAP-21.		

1	£ ×	~													R	EPORT	NUM	BER
)ସ୍ତ୍ର	了。 5日/	1 4 mil 1			GEOT	ECI	INIC	CAL CO	RE LOG	RECC	RD				2	2466	55
cc	NTR	АСТ	Mo	ona	ghan Acti	ve Travel	- Mai	n Site					DR	ILLHOLE	NO	RC	03	
cc	D-ORI	DINA	TES											EET			et 2 of	
			EVEL (mO	D)				RIG TYPE FLUSH			Beretta T Air/Mist	- A A	te drill Te logg			5/2023 5/2023	
	IENT IGINE			onaç ORA	ghan Co.(Co.			INCLINAT	ION (deg) METER (m	m)	-90 78		GGED B			SL - J O'She	
Downhole Depth (m)		T.C.R.%	S.C.R.%	R.Q.D.%	Spa L	cture acing og im) 0 500 <u>un an U</u>	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
	10.50				-				End	of Borehole	at 10 50 m				10.50			<u></u>
									Eno	or porenoie	at 10.50 m							
- 12																		
- 13																		
 14 																		
5 15 																		
- - - - - - - - - - - - - - - - - - -																		
- - - - 17																		
18																		
- 19 - 19 - REI																		
Ę																ľ		
RE	MAR						I	1				······			WAT	ER ST	RIKE	DETAILS
	e cas	ed fro	om 0.0	0-8	.00m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)		nment		
															N	o water	strike	recorded
			.								Hole	Cosina	1 0-44		GRC	NDNDV	/ATER	DETAILS
			ON DE			07 n		-T		Date	Depth	Casing Depth	Depth t Water		ments			
	Date		ip Det	<u>, , , , , , , , , , , , , , , , , , , </u>	RZ Top	RZ Base	<u>+</u>	Тур	<u>e</u>	29-05-23	10.50	8.00	10.40	Water drilling	levels r	ecorded	5 mins a	after end of

1	1997 - 1997						·····								 	REPOR	TNUM	IBER
N. L.	્રેકે	<u>у</u> Ъ/				GEOT	ECH		AL CO	RE LOG	RECO	RD					2466	65
CC	DNTR	ACT	N	lona	ghan Acti	ve Travel	- Maiı	n Site			· · · · ·		C	RILLHO	LE NO	RC	:06	
cc)-ORI	DINA	TES											HEET			et 1 of	
			VEL						RIG TYPE FLUSH			Beretta T Air/Mist	-1A (ATE DRI)5/022)5/202	
EN	IENT GINE			iona ORA	ghan Co.(T	Co.			INCLINATI	ION (deg) METER (m	m)	-90 78		RILLED			3SL - J).O'She	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Li (m	cture cing >g m) 0 500	Non-intact Zone	Legend			Descript				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1		0	0	0					SYMMET returns of	RIX DRILLII CLAY.	NG: No reco	overy, obse	erved by	driller as				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>1.50</u> 2.60	73	0	0					gravelly C	f stiff to very LAY, with or to subround estone.	ccasional co	bbles. Sar	nd is fine	. Gravel	2.60			
3	4.00	0	0	0					SYMMETI returns of	RIX DRILLI gravelly CL	NG: No reco AY with occ	wery, obse asional co	erved by bbles	driller as				N = 57 (13, 12, 27, 11, 9, 10)
4 4 5	5.50	100	0	0	-													N = 55 (6, 17, 18, 11, 12, 14)
	7.00	0	0	0														N = 44 (5, 7, 10, 1†, 10, 13)
17 17 17 18	8.50	0	o	Ů														N = 46 (8, 9, 8, 14, 13, 11)
	10.00	0	0	0														N = 10/75 mm (7, 14, 10)
	MARI			00.4	E 00					Water	Casina	Social	Dies	······································		TER S	TRIKE	DETAILS
	e cas	ed fr	om U.	00-1	5.00m					Strike	Casing Depth	Sealed At	Rise To	Tim (mir	<u>v  </u>	ommen No wate		e recorded
¥7									· · · · · ·		Liele				GR	OUND	NATE	RDETAILS
	Date		ON D		ILS RZ Top	RZ Base		Түр	9	Date	Hole Depth	Casing Depth	Dept Wa	ter Co	mmen	ts		
1 <u>8</u>																		

	<u>, 2</u> . 25	in				GEOTI	ECł	INIC	CAL CO	RE LOG	RECO	RD			R	EPORT		
	03	<u>5</u> _/														2	466	65
cc	NTR	ACT	N	tonag	han Activ	/e Travel -	Mai	n Site						LLHOLE	NO	RC		
cc	-ORI	DINA	TES											E DRILLI	ED		et 2 of : 5/0223	
			VEL						RIG TYPE FLUSH			Beretta T Air/Mist	44 DA1	E LOGGI	ED	23/0	5/2023	l 
1	IENT GINE			lonaç ORA I	jhan Co.(			r	INCLINATI	iON (deg) METER (mr	n)	-90 78	1	LLED BY GED BY			iSL - Ji O'She	
Bownhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Spa Lo (m	xg m)	Non-intact Zone	d Legend	CVMARET		Descript			<b>1</b>	Depth (m)	Elevation	Standpipe Details	SPT (N Value)
**************************************	11.50	0	0	0				0	returns of	RIX DRILLIN gravelly CL/	NG: No reco	very, obse asional cot	rved by dri bbles <i>(cont</i>	lier as inued)				N = 46 (4, 11, 12, 9, 11, 14)
12	13.00	0	0	0														N = 55 (15, 16, 19, 11, 12, 13)
t	13.50	0	0	0											13.50			
**************************************	15.00	100	0	0					Returns of gravelly Cl is angular are of lime	f stiff to very LAY, with oc to subround astone.	stiff, dark b casional co ed fine to co	rown, sligh bbles. San oarse of lin	ntly sandy, d is fine. C nestone. C	obbles	15.00			N = 50/32 mm (25, 50)
15									End	of Borehole a	at 15.00 m							
18																		
19																		
F	MAR	KS			L										WA.	TER ST	RIKE	DETAILS
Hol	e cas	ed fr	om 0.	.00-1	5.00m					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	<u> </u>	mment		
															N	o water	r strike	recorded
INS	TAL			ETA	ILS				. <u>"</u> ,	Date	Hole	Casing	Depth t Water	0 Com	GRC ments	****	VATER	DETAILS
	Date         Tip Depth         RZ Top         RZ Base         Type         23-05-23         15.00         15.00         13.40         Water levels recorded 5 mins after divide 8 mins after divide 8 mins after divide 8 mins after di										after end of							
														anon	y.			

RC03 - Box 1 of 1 - 8.10-10.50m



RC06 - Box 1 of 1 - 1.50-15.00m



Appendix III Trial Pit Records Photographs

1			**********						Ŧ	REPORT N	UMBER	~
	551	•	TRIAL PIT	RECO	RD					24	665	
CON	ITRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPO		
LOG	GED BY	I.Reder	CO-ORDINAT	ES	667,40 833,8	06.85 E 17.07 N		4	TARTED	28/0	et 1 of 1 4/2023 4/2023	
CLIE	INT	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	72.34			EXCAV/ METHO	TION		racked	
*****		аналанан талан т							Samples		(F	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL		<u> 112 . 114</u>				, , , , , , , , , , , , , , , , , , ,	•			
	CLAY w coarse.	eyish brown to brown, slightly sand ith medium cobbles content. Sand gravel is fine to coarse subangular ded, cobbles are small to coarse s ded	s fine to to		0.25	72.09		AA200193	в	0.70		
1.0	fine to c	stiff, grey, slightly sandy gravelly sli ith high cobbles and boulders contr oarse, gravel is fine to coarse suba ded, cobbles and boulders are sub	ngular to		0.90	71.44		AA200193	В	0.70		
	TP term	inated at 1.8m due to many boulde	·····		1.80	70.54		AA200194	в	1.60		
3.0												
4.0												
Grou	ndwater (	Conditions										
TP di	ry											
<b>Stabi</b> TP st	ility able	инноличенияния же с с										
Gene TP de	one for civ	r <b>ks</b> ⁄ic offices project										

	e									REPORT N	IUMBER	
	BBL	г	RIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPC		
LOG	GED BY	I.Reder	CO-ORDINAT	ES	667,4 833,7	17.94 E 32.52 N		SHEET DATE S		27/0	et 1 of 1 4/2023	
CLIE		Monaghan Co.Co.	- GROUND LE	VEL (m)	69.34			DATE C EXCAVA METHO	ATION		4/2023 racked	
ENG	INEER	DBFL/Cora						1	Sample	, `,		5
							ov.		Sample	<u>s</u>	KPa)	tromet
	-	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	Ļ		NIC ME								
	with low	rm, brown, slightly sandy slighlty gra cobbles content. Sand is fine to co	arse, gravel is		0.25	69.09						
	\small su	barse subangular to subrounded, co bangular to subrounded.	,	000	0.55	68.79						
1.0	coarse s subangu	prownish grey, very clayey very san ubrounded to subangular GRAVEL lar to angular cobbles and boulders	with high s content.	80.00				AA200181	В	0.80		
1.0				0000								
	TP termi End of T	nated at 1.4m due to many boulder rial Pit at 1.40m	S	1000	1.40	67.94						
2.0												
3.0												
4.0												
	ndwater C	onditions										
TP di	ry											
Stabi TP sl	i <b>lity</b> ightly unst	able from 0.55m										
Gene	ral Remar	ks										
TP do	one for civ	ic offices project										

									F	REPORT N	UMBER	
	535	7	FRIAL PIT	RECO	RD					24	665	
CON	ITRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPO		
LOG	GED BY	I.Reder	CO-ORDINAT	ËS	667,4 833,7	51.08 E 66.18 N	<del>,,,,,</del> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE SI		27/0-	et 1 of 1 4/2023 4/2023	
CLIE ENG	INT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	72.15			EXCAVA METHOD	TION		racked	
									Samples		a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOI Soft. bro	L wn, sandy slightty gravelly CLAY w	ith low cobbles	<u>11</u> 12 12 12 12 12 12 12 12 12 12 12 12 12	0.20	71.95					<del></del>	
	content.	Sand is fine to coarse, gravel is fin lar to subrounded, cobbles are smaller to subrounded.	e to coarse					AA200179	в	0.60		
	silty CLA	tiff, greyish brown, slightly sandy g Y with high cobbles and boulders o coarse, gravel is fine to coarse sub ded, cobbles and boulders are sub	content. Sand		0.80	71.35						
-	TP termi	nated at 1.7m due to many boulder rial Pit at 1.70m			1.70	70.45		AA200180	В	1.50		
2.0	End of T	rial Pit at 1.70m										
Grou TP di	ndwater C ry	onditions		. <u></u>	<u></u>	1E		<u></u>		<u> </u>		
Stabi TP st	lity able							val.ve. a				
Gene	ral Remar	ks		<u></u>								
		ns coffices project										

IGSL TP LOG 24665.GPJ IGSL GDT 10/5/23

		***************************************								REPORT N	UMBER	
	331,		TRIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPO		
LÓG	GED BY	l.Reder	CO-ORDINAT		833,7	81.57 E 81.44 N		DATE SI DATE C		28/0	et 1 of 1 4/2023 4/2023	<u></u>
CLIE ENGI	NT NEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	73.74			EXCAVA METHO	TION D	3T T mac	racked hine	
									Sample	s	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			<u>N. N.</u>	0.10	73.64		<u> </u>				
	cobbles gravel is cobbles (POSSIE Firm to s CLAY wi	own, slightly sandy very gravelly C and boulders content. Sand is fine fine to coarse subangular to subru and boulders are subangular to ar BLE FILL) stiff, greyish brown, sandy gravelly ith high cobbles and boulders cont barse, gravel is fine to coarse suba ded, cobbles and boulders are sub	to coarse, bunded, agular. slightly silty ent. Sand is		0.60	73.14		AA200184	В	0.50		
	TP tormi	nated at 1.8m due to many boulde			1.80	71.94		AA200185	В	1.30		
2.0												
<b>4.0</b>												
	- dec= 1 - 1											
Groui TP dr		Conditions										
Stabi TP sta			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>									
	ral Remar one for civ	ks ic offices project									*******	

										REPORT N	UMBER	
	531	-	FRIAL PIT	RECO	RD					24	665	
CON	ITRACT	Monaghan Active Travel		··········				TRIAL P	IT NO.	TPC		
LOG	GED BY	I.Reder	CO-ORDINAT	ES	667,50 833,70	07.95 E 32.70 N		DATE S		<b>)</b> 28/0	et 1 of 1 4/2023 4/2023	
CLIE	INT	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	69.54			EXCAVA METHO	TION		racked	
									Sample	s		eter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOI	L					5	йщ	£		~	Ξ÷
	Soft, bro fine to co subround	wn, slightly sandy slightly gravelly ( barse, gravel is fine to coarse suba ted	CLAY. Sand is ngular to		0.20	69.34						
1.0	Firm to s	tiff, brownish grey, slightly sandy g Y with high cobbles and low bould ine to coarse, gravel is fine to coar unded, cobbles and boulders are s	ravelly slightly ers content. se subangular ubangular to		0.50	69.04		AA200182	В	0.70		
2.0					2.10	67.44		AA200183	в	1.70		
3.0	TP termin End of Tr	nated at 2.1m due to many boulder rial Pit at 2.10m	s		2.10	07.44						
4.0												
Grou TP di	ndwater C	onditions		t.				IE		l	<u></u>	<u> </u>
Stabi TP st	lity able						*******					
	ral Remari	ks										
		ks c offices project										

ő	
ğ	

								*******	F	EPORT N	UMBER	
	55L	Т	RIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPO		
LOG	GED BY	I.Reder	CO-ORDINAT	ΈS	667,4 833,8	74.33 E 10.79 N			TARTED	28/0	et 1 of 1 4/2023 4/2023	
CLIE ENG	NT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	74.34			EXCAVA METHOI	TION		racked	
									Samples		(j)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
- C.O	cobbles (	wn, slightly sandy slightly gravelly C content. Sand is fine to coarse, grav ubangular to subrounded, cobbles a lar to subrounded.	el is fine to		0.25	74.09						
1.0	silty CLA is fine to	tiff, greyish brown, slightly sandy gra Y with high cobbles and boulders co coarse, gravel is fine to coarse sub led, cobbles and boulders are suba	ontent. Sand		0.80	73.54	(Seepage)	AA200186	В	0.70		
-	TP termin End of Ti	nated at 1.5m due to many boulders ial Pit at 1.50m	S	<u>-</u>	1.50	72.84		AA200187	В	1.40		
2.0							2					
-												
3.0												
4.0												
	ndwater C age flow a			<u> </u>								
Stabi	lity											
TP st	adie											
<b>Gene</b> TP do	ral Remari one for civi	t <b>s</b> c offices project				<u> </u>	<u></u>		. <u></u>	*****		

IGSL TP LOG 24665.GPJ IGSL.GDT 10/5/23

		***************************************							F	REPORT N	UMBER	
Real Providence	53L		TRIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel				<u>.</u>		TRIAL P	IT NO.	TPC		
LOG	GED BY	í.Reder	CO-ORDINA	TES	667,4 833,8	58.22 E 33.25 N		DATE S		28/0	et 1 of 1 4/2023 4/2023	
CLIE ENGI	NT NEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	75.79			EXCAVA METHO	TION		racked	
									Samples	,	a)	neter
		Geotechnical Description	ı	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			<u> 24. 34.</u> <u>1</u> 24. 3	0.25	75.54				· · · · · ·		
	some ha	wn, slightly sandy slighlty gravell ir roots. Sand is fine to coarse, g ubangular to subrounded.	y CLAY with ravel is fine to									
1.0	Soft to fi medium fine to co	rm, greyish brown, very sandy gr cobbles content. Sand is fine to parse subangular to subrounded bangular to angular. (Possible ve	coarse, gravel is cobbles are	0 0 0 0	0.60	75.19		AA200188	в	0.50		
								AA200189	В	1.30		
	cobbles gravel is	tiff, brown, slightly sandy gravelly and low boulders content. Sand fine to coarse subangular to sub and boulders are subangular to a	s fine to coarse, rounded,	000	1.50	74.29		AA200190	B	1.80		
2.0	TP termi	nated at 1.9m due to many bould rial Pit at 1.90m			1.90	73.89			-			
3.0												
4.0												
irou P dr		onditions		<u> </u>	<u>t</u>	L	L	_ <u>_</u>		1		I
tabil P st		***************************************										
iene P do	ral Remar	ks ic offices project										

						****			1	REPORT N	UMBER	
(       	نىرى باكان		TRIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPC		
LOG	GED BY	l.Reder	CO-ORDINA	TES	667,4 833,8	26.80 E 58.25 N		DATE S	TARTED	28/0	et 1 of 1 4/2023 4/2023	
CLIE	NT NEER	Monaghan Co.Co. DBFL/Cora	GROUND LE	VEL (m)	79.90			EXCAVA METHO	ATION		racked	
			E	:					Samples	3	<u></u>	leter
		Geotechnical Descriptio	n	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	L		1. 1. 1			-				-	
	cobbles	rm, brown, slightly sandy gravell and hair roots content. Sand is f fine to coarse subangular to sut	ine to coarse.	10 10	0.25 0.50	79.65 79.40						
1.0	Firm to s with high	fine to coarse subangular to sub are small subangular to subroun stiff, greyish brown, slightly sand n cobbles and low boulders conte e, gravel is fine to coarse subang ded, cobbles and boulders are s	gravelly CLAY					AA200195	В	0.80		
2.0				10,01,01 10,01 10,010				AA200196	в	1.80		
-	TP termi End of T	nated at 2.2m due to many bouk rial Pit at 2.20m	ders	PDo	2.20	77.70						
3.0												
4.0												
Grour FP dr		onditions				. <u> </u>		·······			<b></b>	
Stabil FP sta	ity able											
Senei P do	r <b>al Remar</b> ne for civ	ks ic offices project						·				

										REPORT N	IUMBER	
	556		TRIAL PIT	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TPO		
			CO-ORDINAT	'ES	667 4	77.14 E		SHEET			et 1 of 1	
LOG	GED BY	LReder			833,8	42.01 N		DATE S			4/2023 4/2023	
CLIE	INT	Monaghan Co.Co.	GROUND LEV	VEL (m)	75.17			EXCAVA			racked	
ENG	INEER	DBFL/Cora		1				METHO		mac	nine	T
									Sample	es	-	eter
		Geotechnical Description					ê				(KP ₂	Hand Penetrometer
		acoteonnica: Description		g	~	tion	Water Strike	le		-	Test	Pen
				Legend	Depth (m)	Elevation	Wate	Sample Ref	Type	Depth	Vane Test (KPa)	Hand
0.0	TOPSO	Ļ		24 54					•		-	
	Soft, bro	wn, slightly sandy slightly gravelly	CLAY with hair	0	0.25	74.92						
	roots co	ntent. Sand is fine to coarse, grav ubangular to subrounded.	el is fine to		0.50	74.67						
		tiff, greyish brown, slightly sandy Y with high cobbles and boulders	gravelly slightly					AA200191	в	0.70		
	is fine to	coarse, gravel is fine to coarse sided, cobbles and boulders are su	Jbangular to					AA20019	Ð	0.70		
1.0	angular.	,										
				- P								
	TP termi	nated at 1.5m due to many bould	ers		1.50	73.67		AA200192	В	1.50		
	End of T	rial Pit at 1.50m							_			
~ ~												
2.0												
3.0												
4.0												
Grou P d		Conditions			L <u></u>	1				1	1	L
. u	3											
	47.											
itabi P si	lity able											
iene P de	ral Remar	ks ic offices project										
. 0	200 TO: UIV											

TRIAL PIT RECORD     24665       DIGITARET     Monighen Active Travel     TP10       Select of 1       COORDINATES     667/449.28 E       BOUND LEVEL (m) 81 69     DATE STATED     204/6023       DATE CONTROL     COORDINATES     667/449.28 E     Samples     OPT Traded       DATE STATED     204/6023       DATE STATED     204/6023       DATE CONTROL FEED     Selection     OPT Traded       DATE STATED     204/6023       COORDINATES     GENETION OF TITICHED       DATE STATED     204/6023       COORDINATES     GENETION     STITICHED       Setter Control (Content on the colspan="2">Content content on the colspan="2"			WE WARMAN AND 1								REPORT N	UMBER	
SHEET     Sheet 1 of 1       OCOORDINATES     667/440.28 E       SAUTE STARTED     2004/2023       DATE COMPLICES     SHEET     Sheet 1 of 1       DATE COMPLICES     SHEET     Sheet 1 of 1       DATE COMPLICES     SHEET     Sheet 1 of 1       DATE COMPLICES       SHEET     Sheet 1 of 1       DATE COMPLICES       Geotechnical Description     Image International Start Internation		33L		TRIAL PIT	RECO	RD					24	665	
COORDINATES     COOR	CON	TRACT	Monaghan Active Travel							IT NO.			
Alexi Monagha Co.Co.       Mathematical Co.Co.         NNINEER       DEFL/Cora         Geotechnical Description	LOG	GED BY	I.Reder			667,4 833,8	49.28 E 75.03 N		DATE S		<b>)</b> 28/0	4/2023	
00     TOPSOIL     Use Mail       Soft, brown, slightly sandy slightly gravely CLAY with har     0.30     81.39       coarse subangular to subrown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50				GROUND LE	VEL (m)	81.69							
00     TOPSOIL     Use Mail       Soft, brown, slightly sandy slightly gravely CLAY with har     0.30     81.39       coarse subangular to subrown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50										Sample	es	a)	meter
00     TOPSOIL     Use Mail       Soft, brown, slightly sandy slightly gravely CLAY with har     0.30     81.39       coarse subangular to subrown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly gravely CLAY with har     0.50     81.19       Soft, brown, slightly sandy stightly sandy gravely CLAY with har     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft to very stift, gravels fine to coarse subangular to angular.     0.50     81.19       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50       Soft of Trial Pit at 2.50m     2.50     79.19     A220198     B     2.50			Geotechnical Description	ก	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KI	Hand Penetrometer
Soft brown, slightly sandy sightly gravelly CLAY with hair       0.50       81.19       A220197       B       0.60         Stift to evaluation of the coarse, gravelly CLAY with hair       0.50       81.19       A220197       B       0.60         Into the coarse, gravelly CLAY with hair       0.50       81.19       A220197       B       0.60         Into the coarse, gravelly CLAY with hair       0.50       81.19       A220197       B       0.60         Into the coarse, gravells (Terk) thigh cobbles and boulders are subangular to angular.       0.50       81.19       A220198       B       1.60         Into the coarse, gravell is the to coarse, gravells (Terk to coar	).O	TOPSO	L	······	<u> 16 . 16</u>								
coarse subangular to subrounded.       Coarse subangular to subrounded mown, slightly sandy gravely CLAY with high cobbles and boulders coarse subangular to subrounded, cobbles and boulders are subangular to angular.       AA200195       B       0.60         10       End of Trial Pit at 2.50m       Coarse subangular to angular.       Coarse subangular to angular.       AA200198       B       1.60         10       End of Trial Pit at 2.50m       Coarse subangular to angular.       Coarse subangular to angular.       Coarse subangular to angular.       A200198       B       1.60         10       End of Trial Pit at 2.50m       Coarse subangular to angular.       A200198       B       1.60         10       End of Trial Pit at 2.50m       79.19       AA200198       B       2.50         10       Find of Trial Pit at 2.50m       Coarse subangular to angular.       Coarse subangular.       Coarse subangular.       Coarse subangular.       Coarse subangular.       Coarse subangular.		Soft, bro	wn, slightly sandy slightly grave	Ily CLAY with hair	<u> </u>	1							
angular. A200198 B 1.60 End of Trial Pit at 2.50m Compared Pit at 2.50m P dry Rability P stable everal Pemarks		\coarse s	ubangular to subrounded.			0.50	81.19		AA200197	в	0.60		
a control de la	.0	gravelly Sand is to subrol angular.	CLAY with high cobbles and bo fine to coarse, gravel is fine to c unded, cobbles and boulders ar	, slignity sandy ulders content. coarse subangular e subangular to									
a conditions a con	.0								AA200198	в	1.60		
a.o.		End of T	rial Pit at 2.50m	<del></del>		2.50	79.19		1 4 2 0 0 1 0 0	Б	2.50		
I.0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									HH200195	D	2.50		
roundwater Conditions P dry tability P stable eneral Remarks	.0							-					
P dry ability P stable eneral Remarks	.0												
P dry tability P stable eneral Remarks													
P dry tability P stable eneral Remarks													
P stable eneral Remarks			Conditions										
eneral Remarks P done for civic offices project													
	ene P do	ral Reman	ks ic offices project										

SHEE	. PIT NO. T		4665	
SHEE				
	Т	- 18	11	
LOGGED BY I Reder 833 886 75 N	DATE STARTED 2		Sheet 1 of 1 28/04/2023 28/04/2023	
CLIENT Monaghan Co.Co. GROUND LEVEL (m) 76.84	VATION	3T	Tracked	
ENGINEER DBFL/Cora	Sample	,		la la
			KPa)	romet
Bef     Control       Bef     Mater       Sample     Sample	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 TOPSOIL 0.20 76.64				
Soft to firm, brown/grey motified, slightly sandy slightly gravelly CLAY with low cobbles content. Sand is fine to coarse, gravel is fine to coarse subangular to subrounded, cobbles are small subangular to subrounded.	5 <b>2</b> B	0.70		
Firm to stiff, greyish brown, slightly sandy gravelly CLAY with medium cobbles and low boulders content. Sand is fine to coarse, gravel is fine to coarse subangular to subrounded, cobbles and boulders are subangular to angular.	53 B	1.50		
2.0 TP terminated at 2.3m due to many boulders End of Trial Pit at 2.30m AA2051	54 B	2.20		
3.0				
4.0				
Groundwater Conditions TP dry			- <b>-</b>	
Stability IP stable				
General Remarks TP done for civic offices project				

									F	REPORT N	UMBER	
	BBL	Т	RIAL PIT I	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel	·· · · · · · · · · · · · · · · · · · ·					TRIAL P	T NO.	TP1		
LOG	GED BY	I.Reder	CO-ORDINATI	ES	667,4 833,9	91.71 E 09.43 N		DATE ST		04/0	et 1 of 1 5/2023 5/2023	
CLIE ENG	NT INEER	Monaghan Co.Co. DBFL/Cora	GROUND LEV	/EL (m)	77.46			EXCAVA METHOE	TION	3T T mach		
			· · · · · · ·						Samples		'a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOI Soft, bro	wn, slightly sandy slightly slightly gra	avelly CLAY	<u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>	0.30	77.16						
-	fine to co Soft to fir	roots content. Sand is fine to coarse arse subangular to subrounded. m, greyish brown, slightly sandy sli th low cobbles content. Sand is fine	ahtiv graveliv	0 0 0	0.55	76.91						
- 1.0	gravel is cobbles a Soft to fin CLAY with fine to co angular,	fine to coarse subangular to subrou are small subangular to subroundec m, greyish brown, slightly sandy ve th high cobbles and boulders conter arse, gravel is fine to coarse suban cobbles and boulders are subangul	inded, I. Iry gravelly It. Sand is gular to ar to angular.		1.00	76.46		4A205178	В	0.80		
2.0	TP termi	very clayey angular gravel and cob nated at 1.8m due to boulders or roo ial Pit at 1.80m			1.80	75.66		AA205179	в	1.70		
• • •												
3.0												
- - - - 4.0												
			:									
Grou TP dr	ndwater C y	onditions		Iİ		L I	I			1		
Stabi TP st	lity able											
	ral Remari one for civi	ks c offices project										

IGSL TP LOG 24665.GPJ IGSL.GDT 10/5/23

L		
ł		
ł		
l	Same and	
L		
I	\]63J/	
ł		

IGSL TP LOG 24665.GPJ IGSL.GDT 10/5/23

#### TRIAL PIT RECORD

REPORT NUMBER

1. The second se	55L	I	RIAL PIT I	RECO	RD					24	665	
CON	ITRACT	Monaghan Active Travel						TRIAL P	IT NO.	TP1	<b>3</b> et 1 of 1	
CLIE		I.Reder Monaghan Co.Co.	CO-ORDINAT		667,4 833,9 83.28	64.88 E 29.00 N		DATE S DATE C EXCAVA METHOI		04/0 ED 04/0 3T T	5/2023 5/2023 racked	
ENG	INEER	DBFL/Cora								machine		
									Samples	5 T	Pa)	ometei
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO Soft.brr	IL own, slightly sandy slightly slightly gra		<u>14</u> <u>14</u> 14 <u>14</u> 14 <u>14</u>	0.20	83.08						
1.0	with hain fine to c Firm to s CLAY w to coars	r roots content. Sand is fine to coarse oarse subangular to subrounded. stiff, greyish brown, slightly sandy sli ith low cobbles and boulders conten e, gravel is fine to coarse subangula ded, cobbles and boulders are suba	e, gravel is ghtly gravelly t. Sand is fine r to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.50	82.78		AA205173	В	0.60		
-	TP term End of T	inated at 1.4m due to many boulders rial Pit at 1.40m	;		1.40	81.88		AA205174	В	1.40		
2,0												
3.0												
- 4.0 												
Grou TP dr		Conditions		I	3			L <u></u> _				
Stabi TP st	lity able								90 9/17/18/10/10/10/10/10/10/10/10/10/10/10/10/10/			
Gene TP do	ral Reman	ks ic offices project										

	1									REPORT N	UMBER	
	334	٦	<b>FRIAL PIT</b>	RECO	RD					24	665	
CON	TRACT	Monaghan Active Travel						TRIAL P	IT NO.	TP1		
LOG	GED BY	I.Reder	CO-ORDINAT	ES	667,49 833,9	90.90 E 49.34 N			STARTED 04		Sheet 1 of 1 04/05/2023 04/05/2023	
CLIE	NT NEER	Monaghan Co.Co. DBFL/Cora	- GROUND LE	VEL (m)	80.90			EXCAVA METHO	TION		racked	
			<b></b>						Sample	5	a)	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			<u>84:56</u> 6. 11 3	0.20	80.70						
	CLAY w	rm, brown, slightly sandy slightly sli ith hair roots content. Sand is fine to fine to coarse subangular to subro	o coarse.									
1.0	Firm to s with low coarse,	stiff, greyish brown, slightly sandy g cobbles and low boulders content. gravel is fine to coarse subangular ded, cobbles and boulders are suba	ravelly CLAY Sand is fine to		0.50	80.40		AA205175	В	0.70		
2.0				041010101	2.10	78.80		AA205176	В	1.50		
	TP term End of T	inated at 2.1m due to many boulder rial Pit at 2.10m	s		2.10	70.00		AA105177	В	2.10		
3.0												
4.0												
Grou TP di	ndwater ( 'y	Conditions		I				<u> </u>		<u> </u>		
Stabi TP st	lity able											
	ral Remain one for civ	r <b>ks</b> ric offices project										





TP 01 – spoil





# TRIAL PIT PHOTOGRAPHY RECORD TP 02



TP 02 – spoil







TP 03 – spoil







TP 04 – spoil







TP 05 – spoil





# TRIAL PIT PHOTOGRAPHY RECORD TP 06



TP 06 – spoil





#### TRIAL PIT PHOTOGRAPHY RECORD TP 07



TP 07 – spoil

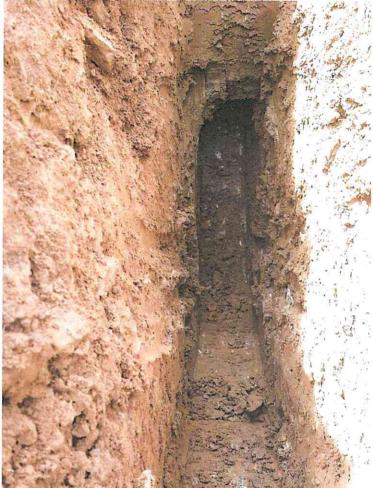






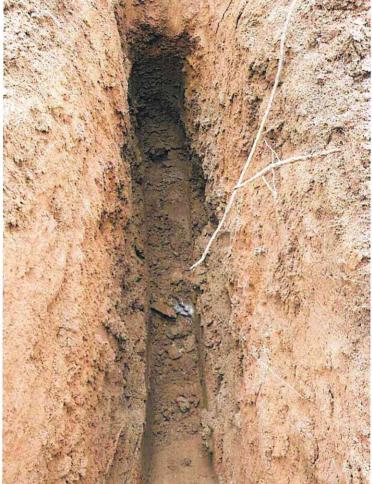





#### TRIAL PIT PHOTOGRAPHY RECORD TP 09



TP 09 – spoil














TP 11 – spoil







TP 12 – spoil







TP 13 – spoil







TP 14 – spoil



Appendix IV BRE Digest 365 Test

	way De		
	Monaghan, A	ctive Travel	
Test No.			
Engineer	04/05/202	3	
	of ground con		
from	to	Description	Ground wat
0.00	0.25	TOPSOIL	Ground wat
0.25	0.50	Soft, brown, slightly sandy slightly gravelly CLAY with low hair roots content	-
0.50	1.30	Soft to firm, brown/grey mottled, slightly sandy gravelly slightly silty CLAY with	DRY
		high subangular to angular cobbles and boulders content	-
1.30		Obstruction - boulders	
		7; N:833784.047; G.L. 71.944mOD	
Notes: SAC	1 done for C	ivic Offices project	
C.L.D.L			
Field Data		Field Test	
Depth to	Elapsed	Depth of Pit (D) 1.30	7
Water	Time	Width of Pit (B)         0.50	_m _m
(m)	(min)	Length of Pit (L) 2.00	- '''
(my	(1111)		
0.500	0.00	Initial depth to Water = 0.50	lm
0.510	1.00	Final depth to water = 0.73	m
0.530	2.00	Elapsed time (mins)= 30.00	
0.560	3.00		_
0.580	4.00	Top of permeable soil	m
0.590	5.00	Base of permeable soil	Jm
0.600	6.00	-	
0.605	7.00	4	
0.610	8.00	4	
0.615	9.00		<b>1</b>
0.620	10.00	Base area 1 Av. side area of permeable stratum over test perio 3.425	m2 m2
0.640	14.00	*Av. side area of permeable stratum over test period 3.425 Total Exposed area = 4.425	m2 m2
0.670	16.00		
0.680	18.00	4	
0.690	20.00	Infiltration rate (f) = Volume of water used/unit exposed area / unit time	el
0.710	25.00		
0.730	30.00	f= 0.00173 m/min or 2.88763E-05	5 m/sec
		1	
		-	
		-	
		-	
			2
		Depth of water vs Elapsed Time (mins)	
	35.00 -		
6	30.00 25.00 20.00 15.00 10.00	•	-
5	25.00		
1			
1 1	20.00	•	-
	15 00		
	13.00	•	
, and		*	_
Flancer	- 10.00	<b>\$</b>	
Flanced			
	5.00		
Eancer	5.00 -		
Elanos		0.100 0.200 0.300 0.400 0.500 0.600 0.700 0	).800
Elance	5.00	0.100 0.200 0.300 0.400 0.500 0.600 0.700 ( Depth to Water (m)	).800

	way De		IGS
	Monaghan, A	ctive Travel	246
Test No. Engineer			
	04/05/2023	3	
	of ground con		
from	to	Description	Ground water
0.00	0.20	TOPSOIL	
0.20	0.70	Soft to firm, brown, slightly sandy slightly gravelly CLAY with medium cobbles	
0.70	1.60	Firm to stiff, greyish brown, slightly sandy gravelly slightly silty CLAY with low	DRY
		subangular to angular cobbles and boulders content	-
ocation: E	:667480.695	; N:833861.983; G.L. 75.647mOD	
		vic Offices project	
eld Data		<u>Field Test</u>	
Depth to	Flancad	Depth of Rit (D) 1.60	]
Water	Elapsed Time	Depth of Pit (D)         1.60           Width of Pit (B)         0.50	_m _m
(m)	(min)	Length of Pit (L) 2.00	m
18	(, , y		<b>J</b> ***
0.600	0.00	Initial depth to Water = 0.60	]m
0.610	1.00	Final depth to water = 0.68	]m
0.620	2.00	Elapsed time (mins)= 60.00	]
0.630	3.00		]
0.630	4.00 5.00	Top of permeable soil Base of permeable soil	lm m
0.640	6.00		1
0.640	7.00	1	
0.640	8.00	1	
0.640	9.00		
0.640	10.00	Base area= 1	]m2
0.640	12.00	*Av. side area of permeable stratum over test period 4.8	m2
0.640	14.00	Total Exposed area = 5.8	_m2
0.640	16.00 18.00	-	
0.660	20.00	Infiltration rate (f) = Volume of water used/unit exposed area / unit time	1
0.660	25.00		1
0.670	30.00	f= 0.00023 m/min or 3.83142E-06	m/sec
0.670	40.00	]	
0.680	50.00		
0.680	60.00		
		4	
		4	
		1	
		a de la companya de la company	
		Depth of water vs Elapsed Time (mins)	
	70.00		
-	60.00	•	-
	60.00 50.00 40.00 30.00 20.00		
		•	
1	40.00	· · · · · · · · · · · · · · · · · · ·	-
3	30.00		
		•	
ť	i 20.00 🕂	• •	-
	10.00		
	10.00		1
	0.00	· · · · · · · · · · · · · · · · · · ·	4
	0.00		
	0.00 +	0.600 0.620 0.640 0.660 0.680 0	.700
		0.600 0.620 0.640 0.660 0.680 0 Depth to Water (m)	.700